工作不好找,普通打工人如何破局

文章讲述了在当前经济环境下,程序员求职面临的挑战,建议降低薪资预期,特别是对大厂员工,应考虑降薪或保持薪资稳定。同时强调个人要有心理准备,积极应对可能的裁员,储备现金流并发展副业以备经济周期波动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

打工人如何破局

大家好,我是苍何,我的一位阿里朋友被裁后,找工作找了一个月都没结果,很多到最后一面被pass了,不由得做一下感慨,即使是大厂背景又如何,面对经济环境和大环境市场,每个人都不容易。

我身边很多都是程序员群体,最近也在在编程导航 收到了很多小伙伴关于求职找工作的咨询,也了解到了今年工作确实不好找,无论是秋招还是校招,比往年都要难一些。

编程导航8月提问列表

马上是金九银十了,我想今年的这情况估计「金」和「银」也不一定多好,大厂都在降本增效,中小企业根本不敢疯狂扩招,在职的担心被裁,被裁的担心找不到工作,找到工作的担心毁约,那我们打工人面对如此,究竟该如何破局呢?

下面就看到的一些大佬的精华和自己的一些观点给大家一起学习,共勉:

1、降低预期

程序员薪资普遍高于其他行业,特别是有好几年经验或有大厂经验的薪资更是偏高,放在前几年跳槽涨薪毋庸置疑,但现在不允许了,企业降本增效,即使大厂毕业照样一堆找不到工作的,不是真找不到,大部分都是不符合预期,我的建议是,先降低预期入职,否则心态会越来越差。

我记得有位同学说当下 9k 的薪资,被裁后想找个 11k 的工作,也受到了大家的疑问,我觉得,先找个稳住的工作,哪怕是不涨薪,否则工作不大好找。特别是对大厂朋友的建议:大厂互跳涨幅控制在 10% 以下,大厂跳到中小厂,建议平薪资,甚至是降薪,如果一线跳到二线,建议根据当地情况做适应性调整,一般为「打骨折」😠。

u=2620711855,1494474011&fm=253&fmt=auto&app=138&f=JPEG.webp

2、有心理准备

这个大环境大家也看到了,连猎头都去卖保险了。我国三大经济支柱,制造、房产、金融,没一个行的。中美贸易影响制造业;政策导向,影响地产;金融是顺周期行业,经济行,它就行。所以,短期看两年内,估计情况不会大改善,要有心里准备。

3、 个人应对策略:

1)失业的,降低预期先就业,维持正常生活开支;

  1. 在职的,卷起来,尽量不要被裁员,被裁了也争取N+1赔偿;

  2. 保住现金流,不做投资或加杠杆的投资,确保自己不要暴雷,最近基金、信托、地产公司暴雷的不少;

  3. 多存钱,这个时候把资产从股市、基金里撤出来,多配置些债券、保险、存款资产,让自己能够应对未来三五年,度过经济周期。

  4. 开辟一条赚钱的路。这个要提上日程,经济不好的时候,一份副业是一个希望。副业如何开展,以后做些分享,但关键是自己探索出适合自己的路。

4、有话说

苍何是土木毕业,当年高考土木红红火火,三总五项,年包 50w 轻轻松松,可惜等我毕业,大基建的风口早已过去,大量的优质土木毕业生被安排去施工单位,跟项目,拿着几千块的薪资,干着上百万的工程,后面苍何只在工地干了两个月就裸辞了,后面又找到了当时比较火的计算机专业,现在面对互联网的下落,我已没当年那紧张焦虑的情绪,因为多年的经历我已经慢慢摸索到了一套生存的技能,也在这条路上不断前行。

至于未来能如何,关注苍何,见证我的成长!

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员苍何

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值