swap-test电路分析(输入为混合态)

前言

1.输入均为纯态
2.输入一个为纯态、一个为混合态
3.输入均为混合态

预备知识:

  1. 混合态和纯态的回顾请参考《关于纯态、混合态的个人理解》

  2. 纯化请参考《施密特分解与纯化》

  3. 不同状态下,迹和内积的关系:

swap-test

1.两个量子态均为纯态

(1)电路图
在这里插入图片描述

2. 输入为纯态和混合态

  1. (1)电路图

swap-test
用|0>测得0的概率: P 0 = 1 / 2 ( 1 + < φ ∣ ρ ∣ φ > ) P0=1/2(1+<φ|ρ|φ>) P0=1/2(1+<φρφ>)
用|1>测得1的概率: P 1 = 1 / 2 ( 1 − < φ ∣ ρ ∣ φ > ) P1=1/2(1-<φ|ρ|φ>) P1=1/2(1<φρφ>)

  1. (2)例子:

现有混合态:
混合态
纯化(加粗部分为为了进行纯化添加的标准正交基)
在这里插入图片描述

现有纯态(注意要进行归一化~)
在这里插入图片描述
(1)初始量子态
在这里插入图片描述

(2)经过H门
在这里插入图片描述

(3)经过C-SWAP 门
在这里插入图片描述

(4)经过H门

在这里插入图片描述
(5) 用|0>测得0的概率:

在这里插入图片描述

3. 输入均为混合态

  1. (1)电路图
    swap-test

用|0>测得0的概率: P 0 = 1 / 2 ( 1 + t r ( ρ σ ) ) P0=1/2(1+tr(ρσ)) P0=1/2(1+tr(ρσ))
用|1>测得1的概率: P 1 = 1 / 2 ( 1 − t r ( ρ σ ) ) P1=1/2(1-tr(ρσ)) P1=1/2(1tr(ρσ))

下面举个例子,两个混合态:

ρ = 1 / 4 ∣ 0 > < 0 ∣ + 3 / 4 ∣ 1 > < 1 ∣ ρ=1/4 |0><0|+3/4|1><1| ρ=1/40><0+3/41><1
σ = 1 / 2 ∣ 0 > < 0 ∣ + 1 / 2 ∣ 0 > < 0 ∣ σ=1/2|0><0|+1/2|0><0| σ=1/20><0+1/20><0

纯化得到:

纯化
在这里插入图片描述
其中第2个qubit,是添加了用于纯化的|iR>(标准正交基)

(1) 初态在这里插入图片描述(2)经过H门:

在这里插入图片描述
(3)经过CSWAP门:
在这里插入图片描述
这里需要说明的是,我们添加的用于纯化的两个比特不进行CSWAP操作。

(4)经过H门
在这里插入图片描述
(5)用|0>求得0的概率:P0=3/4

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值