前言
1.输入均为纯态
2.输入一个为纯态、一个为混合态
3.输入均为混合态
预备知识:
-
混合态和纯态的回顾请参考《关于纯态、混合态的个人理解》
-
纯化请参考《施密特分解与纯化》
-
不同状态下,迹和内积的关系:
1.两个量子态均为纯态
(1)电路图
2. 输入为纯态和混合态
- (1)电路图
用|0>测得0的概率:
P
0
=
1
/
2
(
1
+
<
φ
∣
ρ
∣
φ
>
)
P0=1/2(1+<φ|ρ|φ>)
P0=1/2(1+<φ∣ρ∣φ>)
用|1>测得1的概率:
P
1
=
1
/
2
(
1
−
<
φ
∣
ρ
∣
φ
>
)
P1=1/2(1-<φ|ρ|φ>)
P1=1/2(1−<φ∣ρ∣φ>)
- (2)例子:
现有混合态:
纯化(加粗部分为为了进行纯化添加的标准正交基)
现有纯态(注意要进行归一化~)
(1)初始量子态
(2)经过H门
(3)经过C-SWAP 门
(4)经过H门
(5) 用|0>测得0的概率:
3. 输入均为混合态
- (1)电路图
用|0>测得0的概率:
P
0
=
1
/
2
(
1
+
t
r
(
ρ
σ
)
)
P0=1/2(1+tr(ρσ))
P0=1/2(1+tr(ρσ))
用|1>测得1的概率:
P
1
=
1
/
2
(
1
−
t
r
(
ρ
σ
)
)
P1=1/2(1-tr(ρσ))
P1=1/2(1−tr(ρσ))
下面举个例子,两个混合态:
ρ
=
1
/
4
∣
0
>
<
0
∣
+
3
/
4
∣
1
>
<
1
∣
ρ=1/4 |0><0|+3/4|1><1|
ρ=1/4∣0><0∣+3/4∣1><1∣
σ
=
1
/
2
∣
0
>
<
0
∣
+
1
/
2
∣
0
>
<
0
∣
σ=1/2|0><0|+1/2|0><0|
σ=1/2∣0><0∣+1/2∣0><0∣
纯化得到:
其中第2个qubit,是添加了用于纯化的|iR>(标准正交基)
(1) 初态(2)经过H门:
(3)经过CSWAP门:
这里需要说明的是,我们添加的用于纯化的两个比特不进行CSWAP操作。
(4)经过H门
(5)用|0>求得0的概率:P0=3/4