确定性存储模型(Deterministic Inventory Model)
确定性存储模型(Deterministic Inventory Model)是一种用于管理库存的数学模型。在这种模型中,需求是已知且确定的。优化总成本最小化是库存管理中的一个重要目标,通常包括订购成本、存储成本和缺货成本等。在无约束条件下,建立优化总成本的函数,通过微积分方法便可确定最佳订货量、订货周期。
一、存储模型中的基本概念
存储模型基本费用
库存控制涉及的成本包括:
-
订货成本:为补充库存而进行订货时发生的各种费用之和,通常包括订货手续费、物资运输装卸费、验收入库费、采购人员差旅费以及通讯联络费等。如果货物单价为K元,订货量为Q,固定费用(如手续费)是C3,则订货成本为:KQ+C3。
-
存储成本:存储成本是物资在存储过程中发生的成本。主要包括物资在存储过程中发生变质、损失、丢失等自然损失的费用,库存物资占用资金的成本,以及仓库运营管理的人工费、税金的支出。
-
购置成本:即购买物资耗费的货款,批量折扣。
-
缺货成本:即由于无法满足用户的需求而产生的损失。缺货成本由两部分组成:其一是生产系统为处理误期任务而付出的额外费用,如赶工的加班费、从海运改为空运产生的额外运费负担等。其二是误期交货对企业收入的影响,包括误期交货的罚款等。
存储策略
二、无约束的确定型存贮模型
模型一:不允许缺货,生产时间很短存贮模型(经济订购批量模型)
经济订购批量存贮模型,又称不允许缺货,生产时间很短存贮模型,是一种最基本的确定性存贮模型。在这种模型里,需求率即单位时间从存贮中取走物资的数量是常量或近似乎常量;当存贮降为零时,可以立即得到补充并且所要补充的数量全部同时到位(包括生产时间很短的情况,我们可以把生产时间近似地看成零)。这种模型不允许缺货,并要求单位存贮费,每次订购费,每次订货量都是常数,分别为一些确定的、不变的数值。
假设条件:
- 缺货费用无穷大
- 当存储降至为0时,可以立即得到补充(即备货时间很短,可以近似为0)
- 需求是连续的、均匀的,设单位时间需求量为一个常数R,则t时间的需求量为Rt
- 每次订货量不变,订购费不变
- 单位存储成本不变
符号定义:
- R \footnotesize R R:单位时间需求量
- Q \footnotesize Q Q:每次的订货量
- t \footnotesize t t:每次订货的时间间隔
- C 3 \footnotesize C_3 C3 :每次订货的固定成本
- K \footnotesize K K:货物单价为 K K K元
- C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用
数学模型
- 订货成本:每隔 t \footnotesize t t时间补充一次存储,订货量 Q \footnotesize Q Q必须满足 t t t时间的需求 R t \footnotesize Rt Rt,即 Q = R t \footnotesize Q=Rt Q=Rt,订货成本为 C 3 + K Q = C 3 + K R t \footnotesize \displaystyle C_3+KQ=C_3+KRt C3+KQ=C3+KRt, t t t时间内的平均订货成本为: C 3 t + K R \footnotesize \displaystyle \frac{C_3}{t}+KR tC3+KR
- 存储成本: t t t时间内的平均存储量为: 1 t ∫ 0 t R T d T = 1 2 R t \footnotesize \displaystyle \frac{1}{t} \int_{0}^tRT \text dT=\frac{1}{2}Rt t1∫0tRTdT=21Rt,则 t t t时间内平均存储费用为: 1 2 R t C 1 \footnotesize \displaystyle \frac{1}{2}RtC_1 21RtC1
- 缺货成本:不允许缺货
t t t时间内的平均总成本=订货成本+存储成本+缺货成本:
C ( t ) = C 3 t + K R + 1 2 R t C 1 \footnotesize \displaystyle C(t)=\frac{C_3}{t}+KR+\frac{1}{2}RtC_1 C(t)=tC3+KR+21RtC1
要求函数 C ( t ) C(t) C(t)的极小值,求导令其=0:
C ′ ( t ) = − C 3 t 2 + 1 2 R C 1 \footnotesize \displaystyle C'(t)=-\frac{C_3}{t^2}+\frac{1}{2}RC_1 C′(t)=−t2C3+21RC1
得
t = 2 C 3 C 1 R \footnotesize \displaystyle t=\sqrt{\frac{2C_3}{C_1R}} t=C1R2C3
因为二阶导数 d 2 C ( t ) d t 2 > 0 \footnotesize \displaystyle \frac{\text d^2C(t)}{\text d t^2}>0 dt2d2C(t)>0,所以C(t)在 t ∗ = 2 C 3 C 1 R t^*=\sqrt{\frac{2C_3}{C_1R}} t∗=C1R2C3处取得极小值。此时订货量 Q ∗ = R t ∗ = 2 C 3 R C 1 \footnotesize \displaystyle Q^*=Rt^*=\sqrt \frac{2C_3R}{C_1} Q∗=Rt∗=C12C3R。
这个式子就是存储论中著名的经济订货批量公式,简称EOQ公式。由于 Q ∗ \footnotesize Q^* Q∗、 t ∗ \footnotesize t^* t∗都与 K \footnotesize K K无关,所以此后在费用函数中略去 K R KR KR这项费用, C ( t ) = C 3 t + 1 2 R t C 1 \footnotesize \displaystyle C(t)=\frac{C_3}{t}+\frac{1}{2}RtC_1 C(t)=tC3+21RtC1。将 t ∗ \footnotesize \displaystyle t^* t∗代入 C ( t ) \footnotesize \displaystyle C(t) C(t),得出最低成本 C ∗ = C ( t ∗ ) = 2 C 1 C 3 R \footnotesize \displaystyle C^*=C(t^*)=\sqrt{2C_1C_3R} C∗=C(t∗)=2C1C3R
在经济订货批量(EOQ)模型的推导过程中,我们通常略去采购成本 K R KR KR这一项费用。这是因为采购成本在不同的订货策略下是相同的,不会影响订货量的优化决策。让我们详细解释一下为什么可以略去这一项费用。
例题
益民食品批发部是个中型的批发公司,为附近200多家食品零售店提供货源,批发部的负责人为了减少存储的成本,选择了某种品牌的方便面进行调查研究,制定正确的存储策略。经过市场调研和计算得出,需求量约为每周3000箱,每箱方便面存储一年(52周)的存储费为6元,即 c 1 = 6 元 / 年 ⋅ 箱 c_{1}=6元/年·箱 c1=6元/年⋅箱,订货费 c 3 c_{3} c3为25元/次。请问:最优订货量是多少?两次订货时间的间隔是多长?
解:
1. 已知数据:
- 每周需求量(D) = 3000 箱
- 年存储费(c₁) = 6 元/年·箱
- 每次订货费(c₃) = 25 元/次
2. 计算年需求量(D年):
D 年 = 3000 箱/周 × 52 周 = 156000 箱/年 D_{\text{年}} = 3000 \text{箱/周} \times 52 \text{周} = 156000 \text{箱/年} D年=3000箱/周×52周=156000箱/年
3. 计算最优订货量(EOQ):
Q ∗ = 2 × D 年 × c 3 c 1 = 2 × 156000 × 25 6 = 1300000 ≈ 1140 箱 Q^* = \sqrt{\frac{2 \times D_{\text{年}} \times c_3}{c_1}} = \sqrt{\frac{2 \times 156000 \times 25}{6}} = \sqrt{1300000} \approx 1140 \text{箱} Q∗=c12×D年×c3=62×156000×25=1300000≈1140箱
4. 计算订货间隔时间(T):
T = Q ∗ 每周需求量 = 1140 3000 周 = 0.38 周 = 2.66 天 T = \frac{Q^*}{\text{每周需求量}} = \frac{1140}{3000} \text{周} = 0.38 \text{周} = 2.66 \text{天} T=每周需求量Q∗=30001140周=0.38周=2.66天
最终答案:
- 最优订货量(Q)* ≈ 1140 箱
- 两次订货间隔时间(T) ≈ 2.66 天(或约 2天16小时)
模型二:不允许缺货,生产需一定时间(经济生产批量模型)
符号表示:
- R \footnotesize R R:单位时间需求量(需求速度)
- Q \footnotesize Q Q:每次的订货量(生产批量)
- t \footnotesize t t:每次订货的时间间隔(变量)
- C 3 \footnotesize C_3 C3 :每次订货的固定成本
- K \footnotesize K K:货物单价,元
- C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用
- T \footnotesize T T:生产时间(变量)
- P \footnotesize P P:单位时间生产量(生产速度), P = Q T \footnotesize \displaystyle P=\frac{Q}{T} P=TQ。
假设条件:
- 缺货费用无穷大
- 生产需要一定时间
- 需求是连续的、均匀的,设单位时间需求量为一个常数 R \footnotesize R R,则t时间的需求量为 R t \footnotesize Rt Rt
- 每次订货量不变,订购费不变
- 单位存储成本不变
模型
- t t t时间内的平均订货成本为 C 3 t + K R \footnotesize \displaystyle\frac{C_3}{t}+KR tC3+KR
- t t t时间内的平均存储成本为: 1 2 C 1 ( P − R ) T \footnotesize \displaystyle\frac{1}{2}{C_1(P-R)T} 21C1(P−R)T
最高存储量= ( P − R ) T \footnotesize \displaystyle (P-R)T (P−R)T,平均存储量为 1 2 ( P − R ) T \footnotesize \displaystyle \frac{1}{2}(P-R)T 21(P−R)T, T = R t P \footnotesize \displaystyle T=\frac{Rt}{P} T=PRt
- 缺货成本:不允许缺货
单位时间内总费用:
C ( t ) = 1 2 C 1 ( P − R ) R t P + C 3 t + K R \footnotesize \displaystyle C(t)=\frac{1}{2}{C_1(P-R)\frac{Rt}{P}}+\frac{C_3}{t}+KR C(t)=21C1(P−R)PRt+tC3+KR
利用微积分方法可求得:
- 最佳周期 t ∗ = 2 C 3 P C 1 R ( P − R ) \footnotesize \displaystyle t^*=\sqrt \frac{2C_3P}{C_1R(P-R)} t∗=C1R(P−R)2C3P
- 生产批量 Q ∗ = 2 C 3 R P C 1 ( P − R ) \footnotesize \displaystyle Q^*= \sqrt \frac{2C_3RP}{C_1(P-R)} Q∗=C1(P−R)2C3RP
- 总成本 C ∗ = 2 C 1 C