确定性存储模型(Deterministic Inventory Model)


确定性存储模型(Deterministic Inventory Model)是一种用于管理库存的数学模型。在这种模型中,需求是已知且确定的。优化总成本最小化是库存管理中的一个重要目标,通常包括订购成本、存储成本和缺货成本等。在无约束条件下,建立优化总成本的函数,通过微积分方法便可确定最佳订货量、订货周期。

一、存储模型中的基本概念

存储模型基本费用

库存控制涉及的成本包括:

  • 订货成本:为补充库存而进行订货时发生的各种费用之和,通常包括订货手续费、物资运输装卸费、验收入库费、采购人员差旅费以及通讯联络费等。如果货物单价为K元,订货量为Q,固定费用(如手续费)是C3,则订货成本为:KQ+C3。

  • 存储成本:存储成本是物资在存储过程中发生的成本。主要包括物资在存储过程中发生变质、损失、丢失等自然损失的费用,库存物资占用资金的成本,以及仓库运营管理的人工费、税金的支出。

  • 购置成本:即购买物资耗费的货款,批量折扣。

  • 缺货成本:即由于无法满足用户的需求而产生的损失。缺货成本由两部分组成:其一是生产系统为处理误期任务而付出的额外费用,如赶工的加班费、从海运改为空运产生的额外运费负担等。其二是误期交货对企业收入的影响,包括误期交货的罚款等。

存储策略

在这里插入图片描述

二、无约束的确定型存贮模型

模型一:不允许缺货,生产时间很短存贮模型(经济订购批量模型)

经济订购批量存贮模型,又称不允许缺货,生产时间很短存贮模型,是一种最基本的确定性存贮模型。在这种模型里,需求率即单位时间从存贮中取走物资的数量是常量或近似乎常量;当存贮降为零时,可以立即得到补充并且所要补充的数量全部同时到位(包括生产时间很短的情况,我们可以把生产时间近似地看成零)。这种模型不允许缺货,并要求单位存贮费,每次订购费,每次订货量都是常数,分别为一些确定的、不变的数值。
在这里插入图片描述

假设条件:

  1. 缺货费用无穷大
  2. 当存储降至为0时,可以立即得到补充(即备货时间很短,可以近似为0)
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数R,则t时间的需求量为Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变

符号定义:

  • R \footnotesize R R:单位时间需求量
  • Q \footnotesize Q Q:每次的订货量
  • t \footnotesize t t:每次订货的时间间隔
  • C 3 \footnotesize C_3 C3 :每次订货的固定成本
  • K \footnotesize K K:货物单价为 K K K
  • C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用

数学模型

  • 订货成本:每隔 t \footnotesize t t时间补充一次存储,订货量 Q \footnotesize Q Q必须满足 t t t时间的需求 R t \footnotesize Rt Rt,即 Q = R t \footnotesize Q=Rt Q=Rt,订货成本为 C 3 + K Q = C 3 + K R t \footnotesize \displaystyle C_3+KQ=C_3+KRt C3+KQ=C3+KRt t t t时间内的平均订货成本为: C 3 t + K R \footnotesize \displaystyle \frac{C_3}{t}+KR tC3+KR
  • 存储成本: t t t时间内的平均存储量为: 1 t ∫ 0 t R T d T = 1 2 R t \footnotesize \displaystyle \frac{1}{t} \int_{0}^tRT \text dT=\frac{1}{2}Rt t10tRTdT=21Rt,则 t t t时间内平均存储费用为: 1 2 R t C 1 \footnotesize \displaystyle \frac{1}{2}RtC_1 21RtC1
  • 缺货成本:不允许缺货

t t t时间内的平均总成本=订货成本+存储成本+缺货成本:
C ( t ) = C 3 t + K R + 1 2 R t C 1 \footnotesize \displaystyle C(t)=\frac{C_3}{t}+KR+\frac{1}{2}RtC_1 C(t)=tC3+KR+21RtC1
要求函数 C ( t ) C(t) C(t)的极小值,求导令其=0:
C ′ ( t ) = − C 3 t 2 + 1 2 R C 1 \footnotesize \displaystyle C'(t)=-\frac{C_3}{t^2}+\frac{1}{2}RC_1 C(t)=t2C3+21RC1

t = 2 C 3 C 1 R \footnotesize \displaystyle t=\sqrt{\frac{2C_3}{C_1R}} t=C1R2C3
因为二阶导数 d 2 C ( t ) d t 2 > 0 \footnotesize \displaystyle \frac{\text d^2C(t)}{\text d t^2}>0 dt2d2C(t)>0,所以C(t)在 t ∗ = 2 C 3 C 1 R t^*=\sqrt{\frac{2C_3}{C_1R}} t=C1R2C3 处取得极小值。此时订货量 Q ∗ = R t ∗ = 2 C 3 R C 1 \footnotesize \displaystyle Q^*=Rt^*=\sqrt \frac{2C_3R}{C_1} Q=Rt=C12C3R

这个式子就是存储论中著名的经济订货批量公式,简称EOQ公式。由于 Q ∗ \footnotesize Q^* Q t ∗ \footnotesize t^* t都与 K \footnotesize K K无关,所以此后在费用函数中略去 K R KR KR这项费用, C ( t ) = C 3 t + 1 2 R t C 1 \footnotesize \displaystyle C(t)=\frac{C_3}{t}+\frac{1}{2}RtC_1 C(t)=tC3+21RtC1。将 t ∗ \footnotesize \displaystyle t^* t代入 C ( t ) \footnotesize \displaystyle C(t) C(t),得出最低成本 C ∗ = C ( t ∗ ) = 2 C 1 C 3 R \footnotesize \displaystyle C^*=C(t^*)=\sqrt{2C_1C_3R} C=C(t)=2C1C3R

在经济订货批量(EOQ)模型的推导过程中,我们通常略去采购成本 K R KR KR这一项费用。这是因为采购成本在不同的订货策略下是相同的,不会影响订货量的优化决策。让我们详细解释一下为什么可以略去这一项费用。

例题

益民食品批发部是个中型的批发公司,为附近200多家食品零售店提供货源,批发部的负责人为了减少存储的成本,选择了某种品牌的方便面进行调查研究,制定正确的存储策略。经过市场调研和计算得出,需求量约为每周3000箱,每箱方便面存储一年(52周)的存储费为6元,即 c 1 = 6 元 / 年 ⋅ 箱 c_{1}=6元/年·箱 c1=6/,订货费 c 3 c_{3} c3为25元/次。请问:最优订货量是多少?两次订货时间的间隔是多长?

解:
1. 已知数据:

  • 每周需求量(D) = 3000 箱
  • 年存储费(c₁) = 6 元/年·箱
  • 每次订货费(c₃) = 25 元/次
    2. 计算年需求量(D年):
    D 年 = 3000 箱/周 × 52 周 = 156000 箱/年 D_{\text{年}} = 3000 \text{箱/周} \times 52 \text{周} = 156000 \text{箱/年} D=3000/×52=156000/

3. 计算最优订货量(EOQ):
Q ∗ = 2 × D 年 × c 3 c 1 = 2 × 156000 × 25 6 = 1300000 ≈ 1140 箱 Q^* = \sqrt{\frac{2 \times D_{\text{年}} \times c_3}{c_1}} = \sqrt{\frac{2 \times 156000 \times 25}{6}} = \sqrt{1300000} \approx 1140 \text{箱} Q=c12×D×c3 =62×156000×25 =1300000 1140
4. 计算订货间隔时间(T):
T = Q ∗ 每周需求量 = 1140 3000 周 = 0.38 周 = 2.66 天 T = \frac{Q^*}{\text{每周需求量}} = \frac{1140}{3000} \text{周} = 0.38 \text{周} = 2.66 \text{天} T=每周需求量Q=30001140=0.38=2.66

最终答案:

  • 最优订货量(Q* ≈ 1140 箱
  • 两次订货间隔时间(T)2.66 天(或约 2天16小时

模型二:不允许缺货,生产需一定时间(经济生产批量模型)

在这里插入图片描述

符号表示:

  • R \footnotesize R R:单位时间需求量(需求速度)
  • Q \footnotesize Q Q:每次的订货量(生产批量)
  • t \footnotesize t t:每次订货的时间间隔(变量)
  • C 3 \footnotesize C_3 C3 :每次订货的固定成本
  • K \footnotesize K K:货物单价,元
  • C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用
  • T \footnotesize T T:生产时间(变量)
  • P \footnotesize P P:单位时间生产量(生产速度), P = Q T \footnotesize \displaystyle P=\frac{Q}{T} P=TQ

假设条件:

  1. 缺货费用无穷大
  2. 生产需要一定时间
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数 R \footnotesize R R,则t时间的需求量为 R t \footnotesize Rt Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变

模型

  • t t t时间内的平均订货成本为 C 3 t + K R \footnotesize \displaystyle\frac{C_3}{t}+KR tC3+KR
  • t t t时间内的平均存储成本为: 1 2 C 1 ( P − R ) T \footnotesize \displaystyle\frac{1}{2}{C_1(P-R)T} 21C1(PR)T

    最高存储量= ( P − R ) T \footnotesize \displaystyle (P-R)T (PR)T,平均存储量为 1 2 ( P − R ) T \footnotesize \displaystyle \frac{1}{2}(P-R)T 21(PR)T T = R t P \footnotesize \displaystyle T=\frac{Rt}{P} T=PRt

  • 缺货成本:不允许缺货

单位时间内总费用:
C ( t ) = 1 2 C 1 ( P − R ) R t P + C 3 t + K R \footnotesize \displaystyle C(t)=\frac{1}{2}{C_1(P-R)\frac{Rt}{P}}+\frac{C_3}{t}+KR C(t)=21C1(PR)PRt+tC3+KR
利用微积分方法可求得:

  • 最佳周期 t ∗ = 2 C 3 P C 1 R ( P − R ) \footnotesize \displaystyle t^*=\sqrt \frac{2C_3P}{C_1R(P-R)} t=C1R(PR)2C3P
  • 生产批量 Q ∗ = 2 C 3 R P C 1 ( P − R ) \footnotesize \displaystyle Q^*= \sqrt \frac{2C_3RP}{C_1(P-R)} Q=C1(PR)2C3RP
  • 总成本 C ∗ = 2 C 1 C
Vivado2023是一款集成开发环境软件,用于设计和验证FPGA(现场可编程门阵列)和可编程逻辑器件。对于使用Vivado2023的用户来说,license是必不可少的。 Vivado2023的license是一种许可证,用于授权用户合法使用该软件。许可证分为多种类型,包括评估许可证、开发许可证和节点许可证等。每种许可证都有不同的使用条件和功能。 评估许可证是免费提供的,让用户可以在一段时间内试用Vivado2023的全部功能。用户可以使用这个许可证来了解软件的性能和特点,对于初学者和小规模项目来说是一个很好的选择。但是,使用评估许可证的用户在使用期限过后需要购买正式的许可证才能继续使用软件。 开发许可证是付费的,可以永久使用Vivado2023的全部功能。这种许可证适用于需要长期使用Vivado2023进行开发的用户,通常是专业的FPGA设计师或工程师。购买开发许可证可以享受Vivado2023的技术支持和更新服务,确保软件始终保持最新的版本和功能。 节点许可证是用于多设备或分布式设计的许可证,可以在多个计算机上安装Vivado2023,并共享使用。节点许可证适用于大规模项目或需要多个处理节点进行设计的用户,可以提高工作效率和资源利用率。 总之,Vivado2023 license是用户在使用Vivado2023时必须考虑的问题。用户可以根据自己的需求选择合适的许可证类型,以便获取最佳的软件使用体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值