确定性存储模型(Deterministic Inventory Model)


确定性存储模型(Deterministic Inventory Model)是一种用于管理库存的数学模型。在这种模型中,需求是已知且确定的。优化总成本最小化是库存管理中的一个重要目标,通常包括订购成本、存储成本和缺货成本等。在无约束条件下,建立优化总成本的函数,通过微积分方法便可确定最佳订货量、订货周期。

一、存储模型中的基本概念

存储模型基本费用

库存控制涉及的成本包括:

  • 订货成本:为补充库存而进行订货时发生的各种费用之和,通常包括订货手续费、物资运输装卸费、验收入库费、采购人员差旅费以及通讯联络费等。如果货物单价为K元,订货量为Q,固定费用(如手续费)是C3,则订货成本为:KQ+C3。

  • 存储成本:存储成本是物资在存储过程中发生的成本。主要包括物资在存储过程中发生变质、损失、丢失等自然损失的费用,库存物资占用资金的成本,以及仓库运营管理的人工费、税金的支出。

  • 购置成本:即购买物资耗费的货款,批量折扣。

  • 缺货成本:即由于无法满足用户的需求而产生的损失。缺货成本由两部分组成:其一是生产系统为处理误期任务而付出的额外费用,如赶工的加班费、从海运改为空运产生的额外运费负担等。其二是误期交货对企业收入的影响,包括误期交货的罚款等。

存储策略

在这里插入图片描述

二、无约束的确定型存贮模型

模型一:不允许缺货,生产时间很短存贮模型

经济订购批量存贮模型,又称不允许缺货,生产时间很短存贮模型,是一种最基本的确定性存贮模型。在这种模型里,需求率即单位时间从存贮中取走物资的数量是常量或近似乎常量;当存贮降为零时,可以立即得到补充并且所要补充的数量全部同时到位(包括生产时间很短的情况,我们可以把生产时间近似地看成零)。这种模型不允许缺货,并要求单位存贮费,每次订购费,每次订货量都是常数,分别为一些确定的、不变的数值。
在这里插入图片描述

假设条件:

  1. 缺货费用无穷大
  2. 当存储降至为0时,可以立即得到补充(即备货时间很短,可以近似为0)
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数R,则t时间的需求量为Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变

符号定义:

  • R \footnotesize R R:单位时间需求量
  • Q \footnotesize Q Q:每次的订货量
  • t \footnotesize t t:每次订货的时间间隔
  • C 3 \footnotesize C_3 C3 :每次订货的固定成本
  • K \footnotesize K K:货物单价为 K K K
  • C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用

数学模型

  • 订货成本:每隔 t \footnotesize t t时间补充一次存储,订货量 Q \footnotesize Q Q必须满足 t t t时间的需求 R t \footnotesize Rt Rt,即 Q = R t \footnotesize Q=Rt Q=Rt,订货成本为 C 3 + K Q = C 3 + K R t \footnotesize \displaystyle C_3+KQ=C_3+KRt C3+KQ=C3+KRt t t t时间内的平均订货成本为: C 3 t + K R \footnotesize \displaystyle \frac{C_3}{t}+KR tC3+KR
  • 存储成本: t t t时间内的平均存储量为: 1 t ∫ 0 t R T d T = 1 2 R t \footnotesize \displaystyle \frac{1}{t} \int_{0}^tRT \text dT=\frac{1}{2}Rt t10tRTdT=21Rt,则 t t t时间内平均存储费用为: 1 2 R t C 1 \footnotesize \displaystyle \frac{1}{2}RtC_1 21RtC1
  • 缺货成本:不允许缺货

t t t时间内的平均总成本=订货成本+存储成本+缺货成本:
C ( t ) = C 3 t + K R + 1 2 R t C 1 \footnotesize \displaystyle C(t)=\frac{C_3}{t}+KR+\frac{1}{2}RtC_1 C(t)=tC3+KR+21RtC1
要求函数 C ( t ) C(t) C(t)的极小值,求导令其=0:
C ′ ( t ) = − C 3 t 2 + 1 2 R C 1 \footnotesize \displaystyle C'(t)=-\frac{C_3}{t^2}+\frac{1}{2}RC_1 C(t)=t2C3+21RC1

t = 2 C 3 C 1 R \footnotesize \displaystyle t=\sqrt{\frac{2C_3}{C_1R}} t=C1R2C3
因为二阶导数 d 2 C ( t ) d t 2 > 0 \footnotesize \displaystyle \frac{\text d^2C(t)}{\text d t^2}>0 dt2d2C(t)>0,所以C(t)在 t ∗ = 2 C 3 C 1 R t^*=\sqrt{\frac{2C_3}{C_1R}} t=C1R2C3 处取得极小值。此时订货量 Q ∗ = R t ∗ = 2 C 3 R C 1 \footnotesize \displaystyle Q^*=Rt^*=\sqrt \frac{2C_3R}{C_1} Q=Rt=C12C3R

这个式子就是存储论中著名的经济订货批量公式,简称EOQ公式。由于 Q ∗ \footnotesize Q^* Q t ∗ \footnotesize t^* t都与 K \footnotesize K K无关,所以此后在费用函数中略去 K R KR KR这项费用, C ( t ) = C 3 t + 1 2 R t C 1 \footnotesize \displaystyle C(t)=\frac{C_3}{t}+\frac{1}{2}RtC_1 C(t)=tC3+21RtC1。将 t ∗ \footnotesize \displaystyle t^* t代入 C ( t ) \footnotesize \displaystyle C(t) C(t),得出最低成本 C ∗ = C ( t ∗ ) = 2 C 1 C 3 R \footnotesize \displaystyle C^*=C(t^*)=\sqrt{2C_1C_3R} C=C(t)=2C1C3R

在经济订货批量(EOQ)模型的推导过程中,我们通常略去采购成本 K R KR KR这一项费用。这是因为采购成本在不同的订货策略下是相同的,不会影响订货量的优化决策。让我们详细解释一下为什么可以略去这一项费用。

模型二:不允许缺货,生产需一定时间

在这里插入图片描述

符号表示:

  • R \footnotesize R R:单位时间需求量(需求速度)
  • Q \footnotesize Q Q:每次的订货量(生产批量)
  • t \footnotesize t t:每次订货的时间间隔(变量)
  • C 3 \footnotesize C_3 C3 :每次订货的固定成本
  • K \footnotesize K K:货物单价,元
  • C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用
  • T \footnotesize T T:生产时间(变量)
  • P \footnotesize P P:单位时间生产量(生产速度), P = Q T \footnotesize \displaystyle P=\frac{Q}{T} P=TQ

假设条件:

  1. 缺货费用无穷大
  2. 生产需要一定时间
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数 R \footnotesize R R,则t时间的需求量为 R t \footnotesize Rt Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变

模型

  • t t t时间内的平均订货成本为 C 3 t + K R \footnotesize \displaystyle\frac{C_3}{t}+KR tC3+KR
  • t t t时间内的平均存储成本为: 1 2 C 1 ( P − R ) T \footnotesize \displaystyle\frac{1}{2}{C_1(P-R)T} 21C1(PR)T

    最高存储量= ( P − R ) T \footnotesize \displaystyle (P-R)T (PR)T,平均存储量为 1 2 ( P − R ) T \footnotesize \displaystyle \frac{1}{2}(P-R)T 21(PR)T T = R t P \footnotesize \displaystyle T=\frac{Rt}{P} T=PRt

  • 缺货成本:不允许缺货

单位时间内总费用:
C ( t ) = 1 2 C 1 ( P − R ) R t P + C 3 t + K R \footnotesize \displaystyle C(t)=\frac{1}{2}{C_1(P-R)\frac{Rt}{P}}+\frac{C_3}{t}+KR C(t)=21C1(PR)PRt+tC3+KR
利用微积分方法可求得:

  • 最佳周期 t ∗ = 2 C 3 P C 1 R ( P − R ) \footnotesize \displaystyle t^*=\sqrt \frac{2C_3P}{C_1R(P-R)} t=C1R(PR)2C3P
  • 生产批量 Q ∗ = 2 C 3 R P C 1 ( P − R ) \footnotesize \displaystyle Q^*= \sqrt \frac{2C_3RP}{C_1(P-R)} Q=C1(PR)2C3RP
  • 总成本 C ∗ = 2 C 1 C 3 R P − R P \footnotesize \displaystyle C^*=\sqrt {2C_1C_3R\frac{P-R}{P}} C=2C1C3RPPR
  • 最佳生产时间 T ∗ = 2 C 3 P C 1 P ( P − R ) \footnotesize \displaystyle T^*=\sqrt \frac{2C_3P}{C_1P(P-R)} T=C1P(PR)2C3P

模型三:允许缺货,备货时间很短

模型一、模型二是在不允许缺货的情况下推到出来的。模型三允许缺货,并把缺货损失定量化加以研究。因为允许缺货,所以企业可在存储降为零后,还可以再等一段时间订货。这意味企业可以少付几次订货费用和存储费用,但是需要承担缺货损失成本。一般来说当顾客缺货不受损失或损失很小,这时发生缺货现象对企业是有利的。

假设条件:

  1. 缺货费用有(和模型一的假设条件就是这条不同)
  2. 当存储降至为0时,可以立即得到补充(即备货时间很短,可以近似为0)
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数R,则t时间的需求量为Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变

符号定义:

  • R \footnotesize R R:单位时间需求量(需求速度)
  • Q \footnotesize Q Q:每次的订货量
  • t \footnotesize t t:每次订货的时间间隔
  • C 3 \footnotesize C_3 C3 :每次订货的固定成本
  • K \footnotesize K K:货物单价,元
  • C 1 \footnotesize C_1 C1:单位时间内单位物品的存储费用
  • C 2 \footnotesize C_2 C2:缺货费(单位缺货损失)
  • S \footnotesize S S:最初存储量, S = R t 1 \footnotesize S=Rt_1 S=Rt1

在这里插入图片描述

模型推导:

  • t t t时间内的平均订货成本为 C 3 t + K R \footnotesize \displaystyle\frac{C_3}{t}+KR tC3+KR
  • t t t时间内的平均存储成本为: 1 t C 1 S t 1 = 1 2 t C 1 S 2 R \footnotesize \displaystyle\frac{1}{t}C_1{St_1}=\frac{1}{2t}C_1{\frac{S^2}{R}} t1C1St1=2t1C1RS2
  • t t t时间内平均缺货成本为:
    平均缺货量为: R ( t − t 1 ) 2 \footnotesize \displaystyle \frac{R(t-t_1)}{2} 2R(tt1) ,故缺货成本为 R ( t − t 1 ) 2 2 t \footnotesize \displaystyle\frac{R(t-t_1)^2}{2t} 2tR(tt1)2。将 t 1 = S R \footnotesize \displaystyle t_1=\frac{S}{R} t1=RS带入得 t t t时间内平均缺货成本为:
    1 2 C 2 ( R t − S ) 2 R \footnotesize \displaystyle \frac{1}{2}C_2\frac{(Rt-S)^2}{R} 21C2R(RtS)2

平均总成本:
C ( t , S ) = C 3 t + K R + 1 2 t C 1 S 2 R + 1 2 C 2 ( R t − S ) 2 R \footnotesize \displaystyle C(t,S)=\frac{C_3}{t}+KR+\frac{1}{2t}C_1{\frac{S^2}{R}}+\frac{1}{2}C_2\frac{(Rt-S)^2}{R} C(t,S)=tC3+KR+2t1C1RS2+21C2R(RtS)2

模型求解:
式中有两个变量,利用多元函数求极值的方法求 C ( t , S ) \footnotesize C(t,S) C(t,S)的最小值,得:
t ∗ = 2 C 3 ( C 1 + C 2 ) C 1 R C 2 \footnotesize \displaystyle t^* =\sqrt{\frac{2C_3(C_1+C_2)}{C_1RC_2}} t=C1RC22C3(C1+C2)

S ∗ = 2 C 2 C 3 R C 1 ( C 1 + C 2 ) \footnotesize \displaystyle S^* =\sqrt{\frac{2C_2C_3R}{C_1(C_1+C_2)}} S=C1(C1+C2)2C2C3R

C ∗ = C ( t ∗ , S ∗ ) = 2 C 1 C 2 C 3 R C 1 + C 2 \footnotesize \displaystyle C^*=C(t^*,S^*)=\sqrt{\frac{2C_1C_2C_3R}{C_1+C_2}} C=C(t,S)=C1+C22C1C2C3R

Q ∗ = R t ∗ = 2 R C 3 C 1 ⋅ C 1 + C 2 C 2 \footnotesize \displaystyle Q^*=Rt^*=\sqrt{\frac{2RC_3}{C_1}\cdot \frac{C1+C_2}{C_2}} Q=Rt=C12RC3C2C1+C2

C 2 \footnotesize C_2 C2很大时( C 2 → ∞ \footnotesize C_2 \rightarrow \infty C2,即不允许缺货), C 2 C 1 + C 2 → 1 \footnotesize \displaystyle \frac{C_2}{C_1+C_2} \rightarrow1 C1+C2C21,则 t ∗ = 2 C 3 C 1 R \footnotesize \displaystyle t^* =\sqrt{\frac{2C_3}{C_1R}} t=C1R2C3 S ∗ = 2 C 3 R C 1 \footnotesize \displaystyle S^* =\sqrt{\frac{2C_3R}{C_1}} S=C12C3R C ∗ = 2 C 1 C 3 R \footnotesize \displaystyle C^*=\sqrt{{2C_1C_3R}} C=2C1C3R ,就变成了模型一。

模型四:允许缺货,生产需一定时间

假设条件:

  1. 缺货费用有
  2. 当存储降至为0时,可以得到补充,备货时间不为0
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数R,则t时间的需求量为Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变
    在这里插入图片描述
  • t 1 \footnotesize t_1 t1:开始生产的时间
  • t 2 \footnotesize t_2 t2:缺货时间,即 [ 0 , t 2 ] \footnotesize [0, t_2] [0,t2]时间内存储为0
  • B \footnotesize B B:最大缺货量
  • t 3 \footnotesize t_3 t3:存储量达到最大的时刻,停止生产
  • S \footnotesize S S:最大存储量

模型推导:

  • [ 0 , t ] \footnotesize [0, t] [0,t]时间内的订货成本为: C 3 + K R t \footnotesize \displaystyle C_3+KRt C3+KRt
  • [ 0 , t ] \footnotesize [0, t] [0,t]时间内的存储成本为: 1 2 C 1 ( P − R ) R P ( t − t 2 ) 2 \footnotesize \displaystyle \frac{1}{2}C_1(P-R)\frac{R}{P}(t-t_2)^2 21C1(PR)PR(tt2)2
  • [ 0 , t ] \footnotesize [0, t] [0,t]时间内的缺货成本为: 1 2 C 2 R t 1 t 2 \footnotesize \displaystyle \frac{1}{2}C_2Rt_1t_2 21C2Rt1t2

[ 0 , t ] \footnotesize [0, t] [0,t]时间内平均总成本为:
C ( t , t 2 ) = 1 t [ C 3 + K R t + 1 2 C 1 ( P − R ) R P ( t − t 2 ) 2 + 1 2 C 2 R t 1 t 2 ] \footnotesize\displaystyle C(t,t_2)=\frac{1}{t}\left[ {\textcolor{red}{C_3+KRt}} + {\textcolor{blue}{\frac{1}{2}C_1(P-R)\frac{R}{P}(t-t_2)^2}}+ {\frac{1}{2}C_2Rt_1t_2}\right] C(t,t2)=t1[C3+KRt+21C1(PR)PR(tt2)2+21C2Rt1t2]
模型求解:

∂ C ( t , t 2 ) ∂ t = 0 , ∂ C ( t , t 2 ) ∂ t 2 = 0 \footnotesize \displaystyle \frac{\partial C(t,t_2)}{\partial t}=0,\frac{\partial C(t,t_2)}{\partial t2}=0 tC(t,t2)=0,t2C(t,t2)=0,得:

t ∗ = 2 C 3 C 1 R C 1 + C 2 C 2 P P − R \footnotesize \displaystyle t^*=\sqrt \frac{2C_3}{C_1R} \sqrt \frac{C_1+C_2}{C_2}\sqrt \frac{P}{P-R} t=C1R2C3 C2C1+C2 PRP

Q ∗ = 2 C 3 R C 1 C 1 + C 2 C 2 P P − R \footnotesize \displaystyle Q^*=\sqrt \frac{2C_3R}{C_1}\sqrt \frac{C_1+C_2}{C_2}\sqrt \frac{P}{P-R} Q=C12C3R C2C1+C2 PRP

最大存储量 S ∗ = 2 C 3 R C 1 C 2 C 1 + C 2 P − R P \footnotesize \displaystyle S^*=\sqrt \frac{2C_3R}{C_1}\sqrt \frac{C_2}{C_1+C_2}\sqrt \frac{P-R}{P} S=C12C3R C1+C2C2 PPR

最大缺货量 B ∗ = 2 C 1 C 3 R ( C 1 + C 2 ) C 2 P − R P \footnotesize \displaystyle B^*=\sqrt \frac{2C_1C_3R}{(C_1+C_2)C_2}\sqrt \frac{P-R}{P} B=(C1+C2)C22C1C3R PPR

C ∗ = 2 C 1 C 3 R C 2 C 1 + C 2 P − R P \footnotesize \displaystyle C^*=\sqrt{2C_1C_3R}\sqrt \frac{C_2}{C_1+C_2}\sqrt \frac{P-R}{P} C=2C1C3R C1+C2C2 PPR

模型五:价格有折扣的存储问题

以上模型所讨论的货物单价是常量,得出的存储策略都与货物单价无关。现在介绍货物单价随订购数量而变化的存储策略。一般的情况是购买的数量越多,商品单价越低。少数情况下,某种商品限额供应,超过限额部分的商品单价要提高。

假设条件:

  1. 缺货费用无穷大
  2. 当存储降至为0时,可以立即得到补充(即备货时间很短,可以近似为0)
  3. 需求是连续的、均匀的,设单位时间需求量为一个常数R,则t时间的需求量为Rt
  4. 每次订货量不变,订购费不变
  5. 单位存储成本不变
  6. 货物单价为关于订货量Q的函数K(Q)
    在这里插入图片描述

K ( Q ) = { K 1 0 ≤ Q < Q 1 K 2 Q 1 ≤ Q < Q 2 K 2 Q 2 ≤ Q \footnotesize \displaystyle K(Q)=\begin{cases} K_1 \quad 0 \leq Q < Q_1 \\ K_2 \quad Q_1 \leq Q < Q_2 \\ K_2 \quad Q_2 \leq Q \end{cases} K(Q)= K10Q<Q1K2Q1Q<Q2K2Q2Q

一个周期内所需费用为:
1 2 C 1 Q Q R + C 3 + K ( Q ) Q \footnotesize \displaystyle \frac{1}{2}C_1Q\frac{Q}{R}+C_3+K(Q)Q 21C1QRQ+C3+K(Q)Q
平均每单位货物所需费用:
C ( Q ) = 1 2 C 1 Q R + C 3 + K ( Q ) \footnotesize \displaystyle C(Q)=\frac{1}{2}C_1\frac{Q}{R}+C_3+K(Q) C(Q)=21C1RQ+C3+K(Q)

C I ( Q ) = 1 2 C 1 Q R + C 3 Q + K 1 , Q ∈ ( 0 , Q 1 ) C I I ( Q ) = 1 2 C 1 Q R + C 3 Q + K 2 , Q ∈ [ Q 1 , Q 2 ) C I I I ( Q ) = 1 2 C 1 Q R + C 3 Q + K 3 , Q ⩾ Q 2 \footnotesize \displaystyle \begin{aligned} C^{\mathrm{I}}(Q)=\frac{1}{2} C_{1} \frac{Q}{R}+\frac{C_{3}}{Q}+K_{1}, & \quad Q \in\left(0, Q_{1}\right) \\ C^{\mathrm{II}}(Q)=\frac{1}{2} C_{1} \frac{Q}{R}+\frac{C_{3}}{Q}+K_{2} , & \quad Q \in\left[Q_{1}, Q_{2}\right) \\ C^{\mathrm{III}}(Q)=\frac{1}{2} C_{1} \frac{Q}{R}+\frac{C_{3}}{Q}+K_{3} , & \quad Q \geqslant Q_{2} \end{aligned} CI(Q)=21C1RQ+QC3+K1,CII(Q)=21C1RQ+QC3+K2,CIII(Q)=21C1RQ+QC3+K3,Q(0,Q1)Q[Q1,Q2)QQ2
求解步骤为:

  1. C I ( Q ) \footnotesize C^{\mathrm{I}}(Q) CI(Q)求得极值点(不考虑定义域)为 Q 0 \footnotesize \displaystyle Q_0 Q0
  2. Q 0 < Q 1 \footnotesize \displaystyle Q_0 < Q_1 Q0<Q1,计算 C I ( Q 0 ) , C I I ( Q 1 ) , C I I I ( Q 2 ) \footnotesize \displaystyle C^{\mathrm{I}}(Q_0),C^{\mathrm{II}}(Q_1), C^{\mathrm{III}}(Q_2) CI(Q0),CII(Q1),CIII(Q2) Q ∗ = arg min ⁡ { C I ( Q 0 ) , C I I ( Q 1 ) , C I I I ( Q 2 ) } \footnotesize \displaystyle Q^*=\argmin\{ C^{\mathrm{I}}(Q_0),C^{\mathrm{II}}(Q_1), C^{\mathrm{III}}(Q_2)\} Q=argmin{CI(Q0),CII(Q1),CIII(Q2)}
  3. Q 1 ≤ Q 0 < Q 2 \footnotesize \displaystyle Q_1 \leq Q_0 < Q_2 Q1Q0<Q2, 则 Q ∗ = arg min ⁡ { C I ( Q 0 ) , , C I I I ( Q 2 ) } \footnotesize \displaystyle Q^*=\argmin\{ C^{\mathrm{I}}(Q_0),, C^{\mathrm{III}}(Q_2)\} Q=argmin{CI(Q0),,CIII(Q2)}
  4. Q 0 ≤ Q 2 \footnotesize \displaystyle Q_0 \leq Q_2 Q0Q2,则 Q ∗ = Q 0 \footnotesize \displaystyle Q^*=Q_0 Q=Q0

参考:

  • https://blog.csdn.net/qq_29831163/article/details/89891256
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值