取出Excel中字段对应某列或行的思路

1. 需求描述

在下面的表格中有几百个字段,而且对应的excel有将近200个,我需要从excel文件中,提取需要的字段对应的数据进行分析。
在这里插入图片描述

2. 代码实现

xls2data=importdata(‘*.xlsx’) % use importdata function to import data
position=find(string(xls2data.colheaders)=='fieid that you need'); % find the position of the field
fielddata=data(:, position) % get the value of the field

3. 总结

首先,找到需要使用的在excel中的位置;find()函数就起了这个作用。
其次,再从矩阵中取出该列对应的数据即可。

### 如何使用 Python 和 Pandas 逐读取特定 Pandas 是一种强大的数据处理库,能够轻松实现从 CSV Excel 文件中提取并操作指定的数据。以下是具体方法: #### 使用 `read_csv` 方法读取 CSV 中的某 当需要从 CSV 文件中读取某个特定时,可以利用参数 `usecols` 来限定只加载所需的。这不仅提高了效率还减少了内存占用。 ```python import pandas as pd data = "example.csv" df_specific_columns = pd.read_csv(data, usecols=['target_column'])['target_column'] for value in df_specific_columns: print(value) ``` 上述代码片段展示了如何通过设定 `usecols` 参数来选取目标,并将其转换成一维结构以便于迭代访问每一的内容[^1]。 #### 处理 Excel 表格中的多张工作表 对于包含多个工作表的工作簿文件 (如 .xlsx),可以通过设置 `sheet_name=None` 让函数一次性载入所有的 sheet 数据到一个字典对象里,其中键名对应各个 Sheet 的名称而值则代表相应的 DataFrame 实例。 ```python excel_data_path = r"D:\pandas\Excel file.xlsx" # 加载整个Excel文档至字典型变量"data02"之中 data02 = pd.read_excel(excel_data_path, sheet_name=None) # 遍历每一个Sheet及其对应的DataFrame for sheet_name, dataframe in data02.items(): target_col = dataframe.get('specific_column') if isinstance(target_col, pd.Series): for item in target_col.dropna(): print(f"{sheet_name}: {item}") ``` 这里我们先定义了一个路径字符串指向本地磁盘上的Excel档案位置;接着调用了`pd.read_excel()` 函数并将`sheets_name`设为了None从而获取到了由各Sheet构成的一个映射关系集合——即所谓的“DataFrame 字典”。之后再逐一取出每一页内的'specific_column'字段遍历打印[^2]。 注意,在实际应用过程中可能还需要考虑缺失值等问题,因此增加了`.dropna()`步骤以过滤掉任何可能出现的NaN项。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值