一、AI产品经理和和通用型产品经理的异同:
市面上不同的公司对产品经理的定位有很大的差别,一名合格的产品经理是能对软件产品整个生命周期负责的人。
思考框架相同: AI产品经理和通用型软件产品经理的底层思考框架是一样的,都是要经历产品立项、需求分析、产品设计、产品执行管理(研发测试)、验收、分析迭代这几个阶段。
思维模式不同:通用型产品经理,只需要把业务流程、痛点理清楚,在进行逻辑处理、界面流程化,软件化即可。
而AI产品是AI技术为出发点,为各行各业提供全新的解决方案,甚至会变更原来的业务流程和使用方式。
- 1、根据公司类型(AI公司与非AI公司)及是否自研区分AI产品经理对AI能力的要求:
人工智能已经成为国家的重点发展方向之一,各行各业也加入到AI这个大家庭。除了AI公司招聘AI产品经理,一些传统公司也招。
如下为AI公司的 AI产品经理的招聘要求:
如下为非AI公司的 AI产品经理的招聘要求:
- 2、AI产品的使用群体(购买群体)和载体
AI产品经理分为toB AI产品经理、toC AI产品经理、AI硬件产品经理。
侧重点:
toB AI产品经理: 实际效果, 业务场景
toC AI产品经理: 用户体验, 数据运营
AI硬件产品经理: 使用场景(商场、家里)、硬件运维
二、AI产品经理必备的技能
除了通用型产品经理需要的技能外,还需要加强 对AI场景、AI能力效果、AI算法、数据的理解。
其实AI产品经理就是 用 数据+AI算法 形成效果好的AI应用或场景。
三、如何成为AI产品经理:
1、了解AI应用场景和技术: 多看多试用,BATH 等大公司都有智能云平台,从AI应用场景、产品(体验)、报价等全方位了解。
以下是AI产品经理涉及到的AI技术,并不是说每个技术都非常熟悉,也不是要对算法细节精通。而是根据自己涉及的领域从单点向外辐射,了解各算法、模型的使用场景及其优劣势,逐渐丰富AI技术体系。
由于目前很多AI能力的效果还无法达到商用效果,所以某些AI类产品会混合规则类、统计学的方法去尽量规避AI算法的不可预测性。
2、了解数据对AI产品的重要性:AI产品的核心是数据,只有有效的数据+合适的算法才能合成符合需求的AI模型。
前期尽量参与到产品生命周期的每个细节(包括数据标注、后期运营)
3、熟悉AI类产品的评价指标。 比如智能客服问答的召回率、准确率;ASR的句识别准确率、和字识别准确率等。
四、如果你刚成为AI产品经理尽量做到如下:
1、多问:问AI算法工程师调参的来龙去脉,
2、多做:自己标注和修改数据
3、多听:测试人员的体验优化建议
4、如果可以,每个岗位都轮一段时间。
如何转行/入门AI产品经理 ?
🤔越来越多的人开始转行AI产品经理,毕竟大行情不是太好,对于刚毕业的研究生,想转行的互联网人,AI产品经理,确实是一个不错的方向,我在大厂做了多年的AI产品经理,还是想给大家一些经验和方向⏩
🔥AIGC在行业大火,AI产品经理到底要学哪些内容,和算法工程师有哪些区别,转行AI产品经理要学哪些东西,以下是整个学习思路和方向👇
1️⃣AI产品经理全局学习
2️⃣python系统学习
3️⃣机器学习&深度学习
4️⃣热门AI产品竞品分析
5️⃣AI产品设计学习
6️⃣AI产品0-1实操项目经验
7️⃣AI产品求职&面试
💎以上7点,看起来简单,内部内容其实很多,每一个篇章,展开都有夯实且丰富的内容,需要深度学习。
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K(数据来源:BOSS直聘报告)
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。