ARIMA模型之AQI预测

本文详细介绍了如何使用ARIMA模型预测空气质量指数(AQI)的变化。通过时间序列分析,单位根检验,确定了ARIMA(2,0,1)(0,1)模型为最优模型,并对2016年到2019年的数据进行了预测,验证了模型的有效性。" 51044448,3725625,吴恩达机器学习课程笔记:第一周概要,"['机器学习', '吴恩达', '深度学习', '监督学习', '线性代数']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARIMA模型是一种常用的时间序列分析方法,用于预测未来的数据趋势。ARIMA代表自回归积分移动平均模型,结合了自回归(AR)、差分(I)和移动平均(MA)三种组件。ARIMA模型适用于具有一定规律性和趋势性的数据集,通过分析数据的自相关性和趋势性,可以更准确地预测未来的走势。ARIMA模型的参数包括自回归阶数(p)、差分阶数(d)和移动平均阶数(q),需要通过对数据集的分析和调参来确定最佳的参数组合。总的来说,ARIMA模型是一种强大的工具,可以帮助我们更好地理解和预测时间序列数据的变化趋势。
本文介绍了如何利用ARIMA模型预测我国AQI(空气质量指数)的变化。具体过程如下:

1.ARIMA模型简介

具有如下结构的模型称之为求和自回归移动平均模型:

简记为 A R I M A ( p , d , q ) ARIMA(p,d,q) ARIMA(p,d,q)模型,式中 ∇ d = ( 1 − B ) d ; Φ ( B ) = 1 − ϕ 1 B − ⋯ − ϕ p B p \nabla^d=\left(1-B\right)^d;\quad\Phi(B)=1-\phi_1B-\cdots-\phi_pB^p d=(1B)d;Φ(B)=1ϕ1Bϕp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐老师_xiho

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值