ARIMA模型之AQI预测

本文详细介绍了如何使用ARIMA模型预测空气质量指数(AQI)的变化。通过时间序列分析,单位根检验,确定了ARIMA(2,0,1)(0,1)模型为最优模型,并对2016年到2019年的数据进行了预测,验证了模型的有效性。" 51044448,3725625,吴恩达机器学习课程笔记:第一周概要,"['机器学习', '吴恩达', '深度学习', '监督学习', '线性代数']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ARIMA模型是一种常用的时间序列分析方法,用于预测未来的数据趋势。ARIMA代表自回归积分移动平均模型,结合了自回归(AR)、差分(I)和移动平均(MA)三种组件。ARIMA模型适用于具有一定规律性和趋势性的数据集,通过分析数据的自相关性和趋势性,可以更准确地预测未来的走势。ARIMA模型的参数包括自回归阶数(p)、差分阶数(d)和移动平均阶数(q),需要通过对数据集的分析和调参来确定最佳的参数组合。总的来说,ARIMA模型是一种强大的工具,可以帮助我们更好地理解和预测时间序列数据的变化趋势。
本文介绍了如何利用ARIMA模型预测我国AQI(空气质量指数)的变化。具体过程如下:

1.ARIMA模型简介

具有如下结构的模型称之为求和自回归移动平均模型:

简记为 A R I M A ( p , d , q ) ARIMA(p,d,q) ARIMA(p,d,q)模型,式中 ∇ d = ( 1 − B ) d ; Φ ( B ) = 1 − ϕ 1 B − ⋯ − ϕ p B p \nabla^d=\left(1-B\right)^d;\quad\Phi(B)=1-\phi_1B-\cdots-\phi_pB^p d=(1B)d;Φ(B)=1ϕ1Bϕp

### 使用ARIMA模型预测空气质量 #### 数据预处理 为了有效地使用 ARIMA 模型进行空气质量预测,数据预处理是一个至关重要的步骤。这包括以下几个方面: - **缺失值处理**:如果存在缺失值,则应采用适当的方法填补这些缺失值。常用的方法包括前向填充、线性插值或均值替换等。 - **平稳性检测与转换**:时间序列中的趋势和季节成分会影响 ARIMA 的性能。因此,在构建模型之前,需确认原始序列是否为平稳过程;如果不是,则可通过差分操作使其变得平稳[^1]。 - **异常点识别与修正**:识别并调整任何显著偏离正常范围内的观测值,因为它们可能会干扰参数估计的结果。 ```python import pandas as pd from statsmodels.tsa.stattools import adfuller def test_stationarity(timeseries): result = adfuller(timeseries.dropna()) print('ADF Statistic:', result[0]) print('p-value:', result[1]) data = pd.read_csv('air_quality.csv') test_stationarity(data['pm2_5']) ``` #### 参数选择 一旦完成了必要的预处理工作,就可以着手寻找适合当前问题的最佳 ARIMA(p, d, q) 配置了。这里 p 表示自回归项的数量,d 是指需要几阶差异才能使序列达到稳定状态,而 q 则代表移动平均部分的长度。 一种常见的做法是从一组候选配置中挑选出最优者——比如通过网格搜索的方式遍历不同的 (p,d,q),计算每组设置下的 AIC 或 BIC 准则得分,并最终选定具有最低分数的那个组合作为正式使用的超参设定。 ```python import itertools import warnings warnings.filterwarnings("ignore") # Define the range of parameters to search over. pdq = [(x[0], x[1], x[2]) for x in list(itertools.product(range(3), repeat=3))] best_aic = float("inf") best_pdq = None for param in pdq: try: model = sm.tsa.ARIMA(endog=data['pm2_5'], order=param).fit() aic = model.aic if aic < best_aic: best_aic = aic best_pdq = param except Exception as e: continue print(f"The optimal parameter set is {best_pdq} with an AIC score of {best_aic}.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐老师_xiho

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值