ARIMA模型是一种常用的时间序列分析方法,用于预测未来的数据趋势。ARIMA代表自回归积分移动平均模型,结合了自回归(AR)、差分(I)和移动平均(MA)三种组件。ARIMA模型适用于具有一定规律性和趋势性的数据集,通过分析数据的自相关性和趋势性,可以更准确地预测未来的走势。ARIMA模型的参数包括自回归阶数(p)、差分阶数(d)和移动平均阶数(q),需要通过对数据集的分析和调参来确定最佳的参数组合。总的来说,ARIMA模型是一种强大的工具,可以帮助我们更好地理解和预测时间序列数据的变化趋势。
本文介绍了如何利用ARIMA模型预测我国AQI(空气质量指数)的变化。具体过程如下:
1.ARIMA模型简介
具有如下结构的模型称之为求和自回归移动平均模型:
简记为 A R I M A ( p , d , q ) ARIMA(p,d,q) ARIMA(p,d,q)模型,式中 ∇ d = ( 1 − B ) d ; Φ ( B ) = 1 − ϕ 1 B − ⋯ − ϕ p B p \nabla^d=\left(1-B\right)^d;\quad\Phi(B)=1-\phi_1B-\cdots-\phi_pB^p ∇d=(1−B)d;Φ(B)=1−ϕ1B−⋯−ϕp