整体介绍
1)jtop版本与版权信息:
jtop 4.2.9
:这是jtop工具的版本号,jtop是一个用于监控NVIDIA Jetson平台性能的实时工具。
© 2024, Raffaello Bonghi [raffaello@rnext.it]:表示jtop的版权信息,由Raffaello Bonghi开发。
Website
: https://rnext.it/jetson_stats:提供了jtop的官方网站链接。
2)平台与序列号:
Platform
:这里并未直接显示平台的具体名称,但通常jtop会显示如“NVIDIA Jetson”之类的信息。
Serial Number:
[s|XX CLICK TO READ XXX]:序列号被隐藏了,点击可能会显示完整的序列号。
3)机器与硬件信息:
Machine: aarch64
:表示机器架构为aarch64,即ARM架构的64位版本。
Model: NVIDIA 0rin NX T808-16GB
:这里可能是一个小错误,通常应该是“NVIDIA Jetson Orin NX T808-16GB”,指的是NVIDIA Jetson Orin NX开发板,具有16GB内存。
SoC
: tegra23x:SoC(System on Chip)是tegra23x系列,这是NVIDIA的SoC产品,用于Jetson平台。
4)系统与软件信息:
System:
Linux:操作系统为Linux。
Distribution
: Ubuntu 20.04 focal:发行版为Ubuntu 20.04,代号focal。
Release: 5.10.104-tegra
:内核版本为5.10.104,特别为tegra设备定制。
Python: 3.8.10
:安装的Python版本为3.8.10。
5)NVIDIA JetPack与库信息:
Jetpack: 5.1.1
:JetPack是NVIDIA为Jetson平台提供的一套SDK,包括CUDA、cuDNN、TensorRT等库,版本为5.1.1。
CUDA: 11.4.315
:CUDA版本为11.4.315,用于GPU加速计算。
CUDNN: 8.6.0.166
:cuDNN是CUDA的深度学习库,版本为8.6.0.166。
TensorRT: 8.5.2.2
:TensorRT是NVIDIA的深度学习推理优化器,版本为8.5.2.2。
L4T: 35.3.1
:L4T(Linux for Tegra)是NVIDIA为Tegra处理器提供的Linux操作系统,版本为35.3.1。
6)其他库与接口信息:
Vulkan: 1.3.204
:Vulkan是一个跨平台的图形和计算API,版本为1.3.204。
OpenCV: 4.5.4 with CUDA
: NO:OpenCV版本为4.5.4,但这里显示CUDA支持为NO,可能表示OpenCV没有配置为使用CUDA加速。
Interfaces部分列出了网络接口的IP地址,如wlan0: 10.11.4.142和docker0: 172.17.0.1。
7)jtop界面控制:
1ALL, 2GPU, 3CPU, 4MEM, 5ENG, 6CTRL, 7INFO, Quit:这些是jtop界面的控制选项,允许用户查看不同的系统信息或退出程序。
cuda arch bin
在CUDA(Compute Unified Device Architecture,统一计算设备架构)的上下文中,arch 和 bin 参数与GPU的计算能力(Compute Capability)和编译生成的二进制代码版本紧密相关。具体来说:
CUDA计算能力(Compute Capability)
CUDA计算能力是一个版本号,通常表现为"x.y"的形式(如7.5),它决定了GPU支持的CUDA特性和指令集。每个CUDA兼容的NVIDIA GPU都有一个特定的计算能力版本号。这个版本号对于开发者来说非常重要,因为它决定了开发者可以使用的CUDA特性和优化级别。
arch 参数
在编译CUDA程序时,arch 参数是指定给nvcc(NVIDIA CUDA Compiler)的一个重要参数,它代表着目标GPU的计算能力。通过 -arch=sm_xx 选项(其中 xx 是目标GPU的计算能力版本号),开发者可以指示编译器生成与目标GPU计算能力相匹配的代码。这样做可以优化性能并确保程序能在特定的GPU上正确运行。
bin 参数
虽然直接提及 bin 参数的情况较少,但在CUDA编译和链接过程中,确实会涉及到生成与不同计算能力版本相对应的二进制代码(binary code)。这些二进制代码是根据 arch 参数指定的计算能力版本生成的,并且可能存储在编译后的CUDA程序中,以便在运行时根据目标GPU的实际计算能力进行选择和加载。
在CMake等构建系统中,可能会遇到类似 __cuda_arch_bin 的变量,它用于指定编译CUDA代码时应该包含哪些计算能力的二进制版本。这有助于确保生成的CUDA程序能够兼容多种不同计算能力的GPU。
总结
arch 参数用于指定CUDA编译时目标GPU的计算能力,以优化性能和确保兼容性。
bin 参数(虽然不直接作为nvcc的命令行参数)在CUDA编译和链接过程中涉及,用于生成与不同计算能力版本相对应的二进制代码。
在使用CMake等构建系统时,可能会通过类似 __cuda_arch_bin 的变量来指定需要包含的二进制版本,以实现跨GPU的兼容性。