MINIST手写数字识别——04.多层感知器(MLP)

本文介绍了使用Keras构建多层感知器(MLP)来识别MNIST手写数字的过程,包括数据加载、规范化、one-hot编码、模型定义、编译、训练、指标可视化、模型保存与加载,以及测试集分类结果的统计分析。
摘要由CSDN通过智能技术生成

MINIST手写数字识别——04.多层感知器(MLP)

加载 MNIST 数据集

import tensorflow as tf

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
print(x_train.shape, type(x_train))
print(y_train.shape, type(y_train))

(60000, 28, 28) <class ‘numpy.ndarray’>
(60000,) <class ‘numpy.ndarray’>

数据处理:规范化

# 将图像本身从[28,28]转换为[784,]
X_train = x_train.reshape(60000, 784)
X_test = x_test.reshape(10000, 784)
print(X_train.shape, type(X_train))
print(X_test.shape, type(X_test))

(60000, 784) <class ‘numpy.ndarray’>
(10000, 784) <class ‘numpy.ndarray’>

# 将数据类型转换为float32
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# 数据归一化
X_train /= 255
X_test /= 255

统计训练数据中各标签数量

import numpy as np
import matplotlib.pyplot as plt

label, count = np.unique(y_train, return_counts=True)
print(label, count)

[0 1 2 3 4 5 6 7 8 9] [5923 6742 5958 6131 5842 5421 5918 6265 5851 5949]

fig = plt.figure()
plt.bar(label, count, width = 0.7
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值