UCI Iris数据集K近邻方法建模预测鸢花种类

机器学习入门实践——Iris 数据集 K 近邻方法建模预测鸢花种类

任务介绍:Iris 数据集,采用多分类 KNN 方法建模,通过鸢花外形数据预测鸢花种类。
一、Iris 数据介绍

鸢尾花数据集总共包含150行数据,包含4个特征值及1个目标值。特征值分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度。结果为三种不同品种的鸢尾花。
在这里插入图片描述

二、数据预处理
1、Iris 数据加载
from sklearn import datasets
iris = datasets.load_iris()
print(iris)
2、Iris 数据展示
# 打印特征值名称
print(iris.feature_names)
# 打印训练数据
print(iris.data)
# 打印结果值名称
print(iris.target_names)
# 打印结果数据
print(iris.target)
3、保存训练数据
X = iris.data
4、保存训练结果数据
y = iris.target

三、模型训练

k近邻法(k Nearest Neighbor)是一种用于分类和回归的非参数据建模方法。k近邻算法是最简单的机器学习算法之一。即给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例,这K个实例的多数属于某个类,就把该输入实例分类到这个类中。(这就类似于现实生活中少数服从多数的思想)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值