自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 【arXiv 2025】卷积加法自注意力CASAtt,轻量且高效,即插即用!

CASAtt模块结合了空间注意力和通道注意力机制来增强特征表达。该模块的核心思想是通过空间操作和通道操作分别对查询(Q)和键(K)进行增强,最终生成注意力加权的特征输出。

2025-03-18 20:25:10 1018

原创 【CVPR 2025】即插即用MambaOut,分类、检测、分割表现巨大潜力!

本文探讨了Mamba架构在视觉任务中的必要性,通过构建不包含状态空间模型(SSM)的MambaOut模型,验证了SSM对于图像分类任务并非必需,但对于检测和分割任务可能有益。

2025-03-18 20:18:33 2302 1

原创 【TPAMI 2024】卷积调制空间自注意力SpatialAtt,轻量高效,即插即用!

CAS-ViT模型在多个视觉任务上取得了优异的性能,包括图像分类、对象检测、实例分割和语义分割。

2025-03-17 20:09:41 972

原创 【CVPR 2025】局部区域自注意力LASA,用重叠补丁增强区域特征交互,即插即用!

LRSA能够捕捉到局部区域内的长距离依赖关系,从而增强模型对局部细节的处理能力。

2025-03-17 20:06:21 3013

原创 【CVPR 2025】高效视觉Mamba模块EfficientViM,即插即用!

EfficientViM提出了一种新颖的基于Mamba的轻量级视觉架构,通过HSM-SSD层有效捕获全局依赖关系,同时显著降低了计算成本。该架构在保持模型泛化能力的同时,通过多阶段隐藏状态融合进一步增强了模型的表示能力。

2025-03-14 20:19:19 973

原创 【arXiv 2025】强!轻量级双分支Mamba卷积,提取全局和局部信息,即插即用!

SS-Conv-SSM Block的设计旨在通过分组卷积和SSM层提取图像的局部和全局特征,同时通过通道洗牌避免信息损失,实现高效且准确的特征提取。

2025-03-14 20:15:52 1255

原创 【AAAI 2025】基于离散余弦变换的全频谱空间注意力,增强网络特征学习,即插即用!

基于离散余弦变换(DCT)的全频谱空间注意力。该模块首先对输入进行时间维度上的平均,然后使用DCT的全频带频率基提取完整的频率特征。通过线性层压缩这些特征并应用Sigmoid函数获得空间注意力权重矩阵,最后将权重矩阵与输入相乘以增强特征矩阵。

2025-03-13 21:40:32 1248

原创 【ECCV 2024】动态范围直方图自注意力DHSA,即插即用!

直方图自注意力机制,将空间特征按强度分段并进行分组,然后在各个分组内或分组间应用自注意力,以选择性地关注具有动态范围的空间特征,并处理长距离内相似退化的像素。

2025-03-13 21:36:48 1186

原创 【TIP 2024】高相似性传递注意力High-Similarity-Pass Attention,即插即用!

HSPA)是一种用于深度单图像超分辨率模型中的注意力机制。其核心原理是通过软阈值操作来生成稀疏的概率分布,从而有效地模拟包含大量不相关信息的长距离序列。

2025-03-12 13:45:34 1072

原创 【2025年即插即用】清华大学:用线性注意力实现Mamba并超越Mamba!

基于Mamba模型的核心设计,提出了MILA模型,该模型在多个视觉任务中均表现出色,证明了线性注意力Transformer通过集成Mamba模型的关键设计可以超越Mamba模型本身。

2025-03-12 13:32:12 2651

原创 【ICML 2024】重参数化BatchNorm,可直接替换现有归一化方法!

同时,为了提高Transformer的效率,研究者们尝试了多种方法,包括限制自注意力机制中token交互的范围、采用线性注意力机制以及替换LayerNorm为BatchNorm等。(b) 在推理过程中,可以得到γ=0,因此,Transformer块转变为基于RepBN的架构,该架构可以进一步重参数化为批量归一化,并与线性层合并。此外,SLAB-SwinT模型在ImageNet-1K上取得了83.6%的top-1准确率,比FlattenSwin模型低2.4ms的延迟。

2025-03-11 20:04:44 1100

原创 【重磅福利】2025年最新即插即用模块汇总!

汇总了2025年和2024年最新的即插即用的代码模块,包含众多新颖的注意力机制和新型的卷积操作,对模型涨点作用明显,可以很容易的嵌入各种网络模型中,是非常好用且容易改进的创新点!

2025-03-11 17:07:38 1205

原创 【arXiv 2025】卷积加法自注意力CASAtt,轻量且高效,即插即用!

提出了一种名为CAS-ViT的卷积加法自注意力网络,旨在移动应用中实现效率与性能之间的平衡。该网络通过引入卷积加法令牌混合器(CATM)和卷积加法自注意力(CAS)块,简化了复杂的矩阵运算,如矩阵乘法和Softmax,从而提高了效率。

2025-03-04 20:43:31 1084

原创 【CVPR 2025】高效视觉Mamba模块EfficientViM,即插即用!

EfficientViM提出了一种新颖的基于Mamba的轻量级视觉架构,通过HSM-SSD层有效捕获全局依赖关系,同时显著降低了计算成本。该架构在保持模型泛化能力的同时,通过多阶段隐藏状态融合进一步增强了模型的表示能力。

2025-03-04 20:24:43 3222 2

原创 【TPAMI 2024】卷积调制空间自注意力SpatialAtt,轻量高效,即插即用!

本文提出了一种名为Conv2Former的简单Transformer风格的卷积神经网络(ConvNet),用于视觉识别任务。该网络通过简化自注意力机制,利用卷积调制操作来编码空间特征,展示了在图像分类、目标检测和语义分割等任务上优于现有流行ConvNets和视觉Transformer模型的性能。

2025-03-03 20:21:09 836

原创 【ICLR 2025】极性感知注意力PolaLinAtt,NLP和CV通用,即插即用!

本文提出了一种名为PolaFormer的极性感知线性注意力机制,旨在解决传统线性注意力在视觉变换器中表达能力不足的问题,通过显式建模同号和异号查询-键对的交互,提高了模型的区分度和效率。

2025-03-03 20:06:21 1310

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除