[BZOJ3684][生成函数][拉格朗日反演]大朋友和多叉树

BZOJ3684

F ( x ) F(x) F(x)为树的生成函数, [ x i ] [x^i] [xi]表示 i i i个叶子的满足条件的树的数量
则由题意可得出: F ( x ) = ∑ i ∈ D F ( x ) i + x F(x)=\sum_{i∈D}F(x)^i+x F(x)=iDF(x)i+x
C ( x ) C(x) C(x)为集合D的生成函数,则 F ( x ) = C ( F ( x ) ) + x F(x)=C(F(x))+x F(x)=C(F(x))+x
仍然不好求,设 T ( x ) = x − C ( x ) T(x)=x-C(x) T(x)=xC(x),则 T ( F ( x ) ) = F ( x ) − C ( F ( x ) ) T(F(x))=F(x)-C(F(x)) T(F(x))=F(x)C(F(x)),所以有 T ( F ( x ) ) = x T(F(x))=x T(F(x))=x
到这里懂拉格朗日反演的就可以秒了对吧

拉格朗日反演:
F ( G ( x ) ) = x F(G(x))=x F(G(x))=x,则称 F F F G G G互为复合逆,且有 [ x n ] F ( x ) = 1 n [ x − 1 ] 1 G ( x ) n = 1 n [ x n − 1 ] ( x G ( x ) ) n [x^n]F(x)=\frac{1}{n}[x^{-1}]\frac{1}{G(x)^n}=\frac{1}{n}[x^{n-1}](\frac{x}{G(x)})^n [xn]F(x)=n1[x1]G(x)n1=n1[xn1](G(x)x)n,则多项式求逆+快速幂即可

Code:

#include<bits/stdc++.h>
#define pb push_back
#define poly vector<int>
#define ll long long
#define mod 950009857
using namespace std;
inline int read(){
	int res=0,f=1;char ch=getchar();
	while(!isdigit(ch)) {if(ch=='-') f=-f;ch=getchar();}
	while(isdigit(ch)) {res=(res<<1)+(res<<3)+(ch^48);ch=getchar();}
	return res*f;
}
inline int add(int x,int y){x+=y;if(x>=mod) x-=mod;return x;}
inline int dec(int x,int y){x-=y;if(x<0) x+=mod;return x;}
inline int mul(int x,int y){return 1ll*x*y%mod;}
inline void Mul(int &x,int y){x=1ll*x*y%mod;}
inline void inc(int &x,int y){x+=y;if(x>=mod) x-=mod;}
inline int ksm(int a,int b){int res=1;for(;b;b>>=1,Mul(a,a)) if(b&1) Mul(res,a);return res;}

inline int ad(int x,int y){x+=y;if(x>=(mod-1)) x-=(mod-1);return x;}
inline int mu(int x,int y){return 1ll*x*y%(mod-1);}

namespace Ntt{
	const int N=1e6+5;
	int *w[22],rev[N<<2];
	inline void init(int n){for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)*(n>>1));}
	inline void init_w(){
		for(int i=1;i<=21;i++) w[i]=new int[1<<(i-1)];
		int wn=ksm(7,(mod-1)/(1<<21));
		w[21][0]=1;
		for(int i=1;i<(1<<(20));i++) w[21][i]=mul(w[21][i-1],wn);
		for(int i=20;i;i--)
			for(int j=0;j<(1<<(i-1));j++) w[i][j]=w[i+1][j<<1];
	}
	inline void ntt(poly &f,int n,int kd){
		for(int i=0;i<n;i++) if(i>rev[i]) swap(f[i],f[rev[i]]);
		for(int mid=1,l=1;mid<n;mid<<=1,l++){
			for(int i=0;i<n;i+=(mid<<1)){
				for(int j=0,a0,a1;j<mid;j++){
					a0=f[i+j],a1=mul(f[i+j+mid],w[l][j]);
					f[i+j]=add(a0,a1);f[i+j+mid]=dec(a0,a1);
				}
			}
		}
		if(kd==-1 && (reverse(f.begin()+1,f.begin()+n),1))
			for(int inv=ksm(n,mod-2),i=0;i<n;i++) Mul(f[i],inv);
	}	
	inline poly operator -(poly a,poly b){
		poly c;int lim=max(a.size(),b.size());c.resize(lim);
		for(int i=0;i<lim;i++)c[i]=dec(a[i],b[i]);return c;
	}
	inline poly operator *(poly a,int b){
		poly c;int lim=a.size();c.resize(lim);
		for(int i=0;i<lim;i++) c[i]=mul(a[i],b);return c;
	}
	inline poly operator *(poly a,poly b){
		int m=a.size()+b.size()-1,n=1;
		if(m<=128){
			poly c(m,0);
			for(int i=0;i<a.size();i++)
				for(int j=0;j<b.size();j++) inc(c[i+j],mul(a[i],b[j]));
			return c;	
		}
		while(n<m) n<<=1;
		init(n);
		a.resize(n);ntt(a,n,1);
		b.resize(n);ntt(b,n,1);
		for(int i=0;i<n;i++) Mul(a[i],b[i]);
		ntt(a,n,-1);a.resize(m);
		return a;
	}
}
using namespace Ntt;
inline poly Inv(poly a,int n){
	poly c,b(1,ksm(a[0],mod-2));
	for(int lim=4;lim<(n<<2);lim<<=1){
		init(lim);
		c=a;c.resize(lim>>1);
		c.resize(lim);ntt(c,lim,1);
		b.resize(lim);ntt(b,lim,1);
		for(int i=0;i<lim;i++) Mul(b[i],dec(2,mul(b[i],c[i])));
		ntt(b,lim,-1);b.resize(lim>>1);
	}
	b.resize(n);return b;
}

inline poly deriv(poly a){
	for(int i=0;i<a.size()-1;i++) a[i]=mul(a[i+1],i+1);
	a.pop_back();return a;
}

ll inv[N];
inline poly integ(poly a){
	a.push_back(0);
	for(int i=a.size()-1;i;i--) a[i]=mul(a[i-1],inv[i]);
	a[0]=0;
	return a;
}
inline poly ln(poly a,int n){
	a=integ(deriv(a)*Inv(a,n)),a.resize(n);
	return a;
}

inline poly exp(poly a,int n){
	poly b(1,1),c;a.resize(n<<1);
	for(int lim=2;lim<(n<<1);lim<<=1){
		c=ln(b,lim);
		for(int i=0;i<lim;i++) c[i]=dec(a[i],c[i]);
		inc(c[0],1);b=b*c;
		b.resize(lim);
	}
	b.resize(n);return b;
}

inline poly ksm(poly a,int n,int k){
	a=exp(ln(a,n)*k,n),a.resize(n);
	return a;
}
poly c,t,x;
int n,s,d[N];
int main(){
	inv[0]=inv[1]=1;
	for(int i=2;i<N;i++) inv[i]=mul((mod-mod/i),inv[mod%i]);
	init_w();
	int s=read(),n=read();
	x.pb(1);x.resize(s+1);
	for(int D,i=1;i<=n;i++) D=read(),d[D]=1;
	for(int i=0;i<=s;i++) c.pb(d[i+1]);
	t=x-c;
	t=Inv(t,s+1);
	t=t*x;
	t=ksm(t,s+1,s);
	cout<<mul(ksm(s,mod-2),t[s-1]);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值