bzoj3684 大朋友和多叉树 拉格朗日反演

拉格朗日反演

如果对于幂级数 F ( x ) F(x) F(x) G ( x ) G(x) G(x),有 G ( F ( x ) ) = F ( G ( x ) ) = x G(F(x))=F(G(x))=x G(F(x))=F(G(x))=x,则称 F ( x ) F(x) F(x) G ( x ) G(x) G(x)互为复合逆。记 [ x i ] F ( x ) [x^i]F(x) [xi]F(x) F ( x ) F(x) F(x) i i i次项系数,以此类推,对于这样的 F ( x ) F(x) F(x) G ( x ) G(x) G(x),有:

[ x n ] G ( x ) = 1 n [ x n − 1 ] ( x F ( x ) ) n [x^n]G(x)=\frac{1}{n}[x^{n-1}](\frac{x}{F(x)})^n [xn]G(x)=n1[xn1](F(x)x)n

[ x n ] H ( G ( x ) ) = 1 n [ x n − 1 ] H ′ ( x ) ( x F ( x ) ) n [x^n]H(G(x))=\frac{1}{n}[x^{n-1}]H'(x)(\frac{x}{F(x)})^n [xn]H(G(x))=n1[xn1]H(x)(F(x)x)n

解题思路

生成函数 G ( x ) G(x) G(x) [ x i ] G ( x ) = [ i ∈ D ] [x^i]G(x)=[i \in D] [xi]G(x)=[iD]

生成函数 F ( x ) F(x) F(x) [ x i ] F ( x ) [x^i]F(x) [xi]F(x)为根节点价值为 i i i的多叉树的个数。

F ( x ) = G ( F ( x ) ) + x F(x)=G(F(x))+x F(x)=G(F(x))+x

那么 F ( x ) − G ( F ( x ) ) = x F(x)-G(F(x))=x F(x)G(F(x))=x

所以 x − G ( x ) x-G(x) xG(x) F ( x ) F(x) F(x)互为复合逆。

就可以求解了。

代码

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
	int q=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
	return q;
}
const int mod=950009857,G=7,N=262150;
int n,m;
int g[N],f[N],rev[N],len[N],inv[N],k1[N],k2[N],k3[N],k4[N],k5[N],k6[N];

int qm(int x) {return x>=mod?x-mod:x;}
int ksm(int x,int y) {
	int re=1;
	for(;y;y>>=1,x=1LL*x*x%mod) if(y&1) re=1LL*re*x%mod;
	return re;
}
void getrev(int n)
	{for(RI i=0;i<n;++i) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len[n]-1));}
void NTT(int *a,int n,int x) {
	for(RI i=0;i<n;++i) if(rev[i]>i) swap(a[i],a[rev[i]]);
	for(RI i=1;i<n;i<<=1) {
		int gn=ksm(G,(mod-1)/(i<<1));
		for(RI j=0;j<n;j+=(i<<1)) {
			int t1,t2,g=1;
			for(RI k=0;k<i;++k,g=1LL*g*gn%mod) {
				t1=a[j+k],t2=1LL*g*a[j+i+k]%mod;
				a[j+k]=qm(t1+t2),a[j+i+k]=qm(t1-t2+mod);
			}
		}
	}
	if(x==1) return;
	reverse(a+1,a+n);for(RI i=0;i<n;++i) a[i]=1LL*a[i]*inv[n]%mod;
}
void getinv(int *a,int *b,int n) {
	if(n==1) {b[0]=ksm(a[0],mod-2),b[1]=0;return;}
	getinv(a,b,n>>1);int kn=n<<1;
	for(RI i=0;i<n;++i) k1[i]=a[i],k1[i+n]=b[i+n]=0;
	getrev(kn),NTT(k1,kn,1),NTT(b,kn,1);
	for(RI i=0;i<kn;++i) b[i]=1LL*(2LL-1LL*b[i]*k1[i]%mod+mod)%mod*b[i]%mod;
	NTT(b,kn,-1);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getJF(int *a,int *b,int n)
	{for(RI i=1;i<n;++i) b[i]=1LL*a[i-1]*inv[i]%mod; b[0]=0;}
void getdao(int *a,int *b,int n)
	{for(RI i=1;i<n;++i) b[i-1]=1LL*a[i]*i%mod; b[n-1]=0;}
void getln(int *a,int *b,int n) {
	getdao(a,k3,n),getinv(a,k4,n);
	int kn=n<<1;
	for(RI i=n;i<kn;++i) k3[i]=k4[i]=0;
	getrev(kn),NTT(k3,kn,1),NTT(k4,kn,1);
	for(RI i=0;i<kn;++i) k3[i]=1LL*k3[i]*k4[i]%mod;
	NTT(k3,kn,-1),getJF(k3,b,n);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getexp(int *a,int *b,int n) {
	if(n==1) {b[0]=1,b[1]=0;return;}
	getexp(a,b,n>>1);int kn=n<<1;
	getln(b,k5,n);
	for(RI i=0;i<n;++i) k6[i]=qm(a[i]-k5[i]+mod),k6[i+n]=b[i+n]=0;
	k6[0]=qm(k6[0]+1);
	getrev(kn),NTT(b,kn,1),NTT(k6,kn,1);
	for(RI i=0;i<kn;++i) b[i]=1LL*b[i]*k6[i]%mod;
	NTT(b,kn,-1);
	for(RI i=n;i<kn;++i) b[i]=0;
}
void getksm(int *a,int *b,int n,int K) {
	getln(a,k2,n);
	for(RI i=0;i<n;++i) k2[i]=1LL*k2[i]*K%mod;
	getexp(k2,b,n);
}
void lagrange_inversion(int kn) {
	getinv(g,f,kn);
	for(RI i=0;i<kn;++i) f[kn+i]=g[kn+i]=g[i]=0;
	getksm(f,g,kn,n);
	printf("%lld\n",1LL*g[n-1]*inv[n]%mod);
}

int main()
{
	n=read(),m=read();
	for(RI i=1;i<=m;++i) g[read()-1]=mod-1;
	g[0]=qm(g[0]+1);
	int kn=1;while(kn<=n) kn<<=1,len[kn]=len[kn>>1]+1;
	len[kn<<1]=len[kn]+1,inv[0]=inv[1]=1;
	for(RI i=2;i<=(kn<<1);++i) inv[i]=1LL*(mod-mod/i)*inv[mod%i]%mod;
	lagrange_inversion(kn);
	return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值