半监督 + DEC,与DEC不同的是,对节点对实施限制,从而减小类内聚类,增加类间距离。
文章:文章链接
代码:代码的Keras实现
半监督聚类
聚类问题本是无监督问题,而半监督聚类算法的监督信息来自哪里呢?来自节点之间是否有连边。有的节点一定属于同一类,而有的节点一定不属于同一类。
第一篇半监督深度聚类文章:Deep transductive semi-supervised maximum margin clustering
模型
- pretrain:SAE,每一层是降噪自编码器
- initialization:对低维嵌入使用k-means获得初始的类中心和样本类别。
- 获得先验知识,矩阵A:pairwise constraints ML和CL
- 目标函数:
其中
算法流程
思考小结
先用堆积自编码器学习到可靠的低维表示,再用目标分布和可靠的节点对引导低维表示趋向于类内近类间远,从而促进聚类。如果不用可靠节点对进行监督,DEC在聚类阶段的目标分布不够可靠,可能会加大表示的便宜,在训练过程中进一步加大偏差。