SDEC: Semi-supervised deep embedded clustering

半监督 + DEC,与DEC不同的是,对节点对实施限制,从而减小类内聚类,增加类间距离。
文章:文章链接
代码:代码的Keras实现

半监督聚类

聚类问题本是无监督问题,而半监督聚类算法的监督信息来自哪里呢?来自节点之间是否有连边。有的节点一定属于同一类,而有的节点一定不属于同一类。
第一篇半监督深度聚类文章:Deep transductive semi-supervised maximum margin clustering

模型

  • pretrain:SAE,每一层是降噪自编码器
  • initialization:对低维嵌入使用k-means获得初始的类中心和样本类别。
  • 获得先验知识,矩阵A:pairwise constraints ML和CL
  • 目标函数:

在这里插入图片描述
其中
在这里插入图片描述在这里插入图片描述

算法流程

在这里插入图片描述

思考小结

先用堆积自编码器学习到可靠的低维表示,再用目标分布和可靠的节点对引导低维表示趋向于类内近类间远,从而促进聚类。如果不用可靠节点对进行监督,DEC在聚类阶段的目标分布不够可靠,可能会加大表示的便宜,在训练过程中进一步加大偏差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值