论文笔记-DEC (Deep Embedded Clustering)

本文介绍了DEC(Deep Embedded Clustering)方法,该方法借鉴T-SNE的t-分布,将聚类度量转化为概率值。文章讨论了如何定义辅助分布p,并通过KL散度来构建损失函数L,以衡量p与q分布之间的差异。作者考虑了强化预测、置信度和聚类中心损失平衡等因素。DEC通过反向传播更新网络和聚类中心,当q分布变化极小即停止学习。参考论文链接及实现代码可供进一步研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文原文:http://proceedings.mlr.press/v48/xieb16.pdf

知识点1.将聚类的度量参考T-SNE中的t-分布,将聚类的度量转换成一个概率值(软分配,qij 表示将样本 i 分配给 j 簇的概率):

在这里插入图片描述
i 表示第 i 个样本,j 表示 第 j 类聚类中心。z表示数据原始特征分布经过Encoder之后的表征空间。

知识2. 作者定义一个辅助分布 p ,通过KL散度衡量 p 和 q 两个分布构造损失函数L

同时也是该文的亮点
在这里插入图片描述
在这里插入图片描述
作者的论文中考虑一下三点构造出p:

1.强化预测。q分布为软分配的概率,那么p如果使用delta分布来表示,显得比较原始。
2.置信度越高,属于某个聚类概率越大。
3.规范每个质心的损失贡献,以防止

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值