论文笔记-DEC (Deep Embedded Clustering)
论文原文:http://proceedings.mlr.press/v48/xieb16.pdf
知识点1.将聚类的度量参考T-SNE中的t-分布,将聚类的度量转换成一个概率值(软分配,qij 表示将样本 i 分配给 j 簇的概率):
i 表示第 i 个样本,j 表示 第 j 类聚类中心。z表示数据原始特征分布经过Encoder之后的表征空间。
知识2. 作者定义一个辅助分布 p ,通过KL散度衡量 p 和 q 两个分布构造损失函数L
(同时也是该文的亮点)
作者的论文中考虑一下三点构造出p:
1.强化预测。q分布为软分配的概率,那么p如果使用delta分布来表示,显得比较原始。
2.置信度越高,属于某个聚类概率越大。
3.规范每个质心的损失贡献,以防止