深度学习--数据

在这里插入图片描述
在这里插入图片描述

1. DataLoader

在这里插入图片描述

  1. dataset 决定数据从哪读,如何读
  2. batchsize 批大小
  3. num_works 是否多进程读取数据
  4. shuffle 每个epoch是否乱序
  5. drop_lash 当样本不能被batchsize整除时,是否舍弃最后一批数据

复写getitem

在这里插入图片描述

加载数据常用的接口

  1. os.path.join(split_dir, "train")
    os.path.join(path, *paths)
    智能地拼接一个或多个路径部分。 返回值是 path 和 *paths 的所有成员的拼接,其中每个非空部分后面都紧跟一个目录分隔符,最后一个部分除外,这意味着如果最后一个部分为空,则结果将以分隔符结尾。 如果某个部分为绝对路径,则之前的所有部分会被丢弃并从绝对路径部分开始继续拼接。
    在 Windows 上,遇到绝对路径部分(例如 r’\foo’)时,不会重置盘符。如果某部分路径包含盘符,则会丢弃所有先前的部分,并重置盘符。请注意,由于每个驱动器都有一个“当前目录”,所以 os.path.join(“c:”, “foo”) 表示驱动器 C: 上当前目录的相对路径 (c:foo),而不是 c:\foo。

  2. class torchvision.transforms.Compose(transforms)
    https://pytorch-cn.readthedocs.io/zh/latest/torchvision/torchvision-transform/

     	train_transform = transforms.Compose([
         transforms.Resize((32, 32)),  # 重新定义图片大小
         transforms.RandomCrop(32, padding=4),  # 先将给定的PIL.Image随机切,然后再resize成给定的size大小。
         transforms.ToTensor(),   #  转化为张量数据
         transforms.Normalize(norm_mean, norm_std),  # 给定均值:(R,G,B) 方差:(R,G,B),将会把Tensor正则化。即:Normalized_image=(image-mean)/std。
         #  标准化加快模型收敛
     ])
    

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值