研究笔记(三)

文章探讨了将FGSM攻击应用于分割任务的实验,使用SINet模型并以GT图作为标签。结果显示基于梯度的攻击质量不佳,可能由于单值标签变更为GT标签引起。结论指出,此类攻击方式并不适用于构建有效的攻击测试集,计划进一步研究其他攻击的移植可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章目录


前言

不再赘述攻击方法,直接进行实验。


一、实验内容

因为最初接触的攻击都是基于梯度的攻击,所以这里最初的实验也是应用梯度攻击移植到分割任务上进行实验,主要工作就是移植攻击并评价其质量

FGSM攻击的移植

在此我将SINet作为将要攻击的模型,标签换为GT图,梯度就计算图片进入SINet之后反向传播的梯度。所产生的攻击图实验结果如下:

在这里插入图片描述
可以看出两种基于梯度的攻击的质量(人眼识别不出的范围内)很差,初步推测原因是单值标签变为GT标签引起的。

总结

实验得到的两种攻击方式并不能成为优秀的攻击测试集,接下来会对更多攻击进行移植实验观察其是否具有可行性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值