图表示学习(Graph pooling)

方法idea1

  1. nodes将节点合并为群集,并将每个群集作为超级群集节点

在这里插入图片描述

  1. 节点合并可以先验完成,也可以在图卷积神经网络的训练过程中完成,例如DiffPooling

idea2

**node selection

J. Lee, I. Lee, J. Kang. Self-attention Graph Pooling, ICML 2019.

学习度量标准以量化节点的重要性,并根据学习的度量标准选择几个节点代表整个图。
在这里插入图片描述

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值