概率论基础知识汇总

本文介绍了统计学中的矩,包括原始矩和中心矩,以及它们在描述变量分布特性中的作用。中心矩与方差、偏度和峰度的关系也进行了说明。此外,详细阐述了协方差和相关系数的概念,用于衡量随机变量之间的相互依赖性。最后,探讨了大数定律,区分了弱大数定律和强大数定律的不同收敛性质,强调了它们在概率论中的重要地位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩:原始矩,中心矩

存在意义:

在数学和统计学中,矩(moment)是对变量分布和形态特点的一组度量。

原点矩和中心距的定义

  1. 直接使用变量 X X X计算的矩被称为原点矩(raw moment),矩通常默认就是指原始矩(原点矩),比如一阶矩,二阶矩。
  2. 移除均值后 X − E ( X ) X-E(X) XE(X)计算的矩被称为中心矩(central moment)。

n n n阶矩的定义为:

v n = ∫ − ∞ + ∞ x n f ( x ) d x v_n=\int_{-\infty}^{+\infty}x^nf(x)dx vn=+xnf(x)dx

n n n阶中心矩的定义为:

μ n = ∫ − ∞ + ∞ ( x − E ( X ) ) n f ( x ) d x \mu_n=\int_{-\infty}^{+\infty}(x-E(X))^nf(x)dx μn=+(xE(X))nf(x)dx

变量的一阶原点矩等价于数学期望(expectation)、二至四阶中心矩被定义为方差(variance)、偏度(skewness)和峰度(kurtosis)。

一个很有意思的问题:对概率分布能否被其各阶矩决定的问题称为矩问题(moment problem),其中在有界区间内的矩问题命名为霍斯朵夫矩问题(Hausdorff moment problem),在无限区间内的矩问题称为汉堡矩问题(Hamburger moment problem)。

参考资料:
https://baike.baidu.com/item/%E7%9F%A9/22856460?fr=aladdin

协方差和相关系数

两个随机变量的协方差定义为:
在这里插入图片描述
n个随机变量两两之间算一下协方差,可以构成一个n阶矩阵:
在这里插入图片描述
其中:
在这里插入图片描述

两个随机变量的相关系数定义为:
在这里插入图片描述
在这里插入图片描述

大数定律

注意到,大数定律并不是经验规律,而是在一些附加条件上经严格证明了的定理,它是一种自然规律因而通常不叫定理而是大数“定律”。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
补充:

弱大数定律表示样本均值“依概率收敛”于总体均值;而强大数定律是比较晚被证明出来的,它证明了样本均值可以“以概率为1收敛”于总体均值。

弱大数定律和强大数定律的区别在于,前者是“依概率收敛(convergence in probability)”,后者是“几乎确定收敛(almost surely convergence)或以概率为1收敛、几乎处处收敛”。后者比前者强,满足后者的必定满足前者,而满足前者的未必满足后者。

以概率为1收敛和几乎确定收敛是一个意思。概率为1发生并不代表一定发生,概率为0也不代表不发生。和不可能事件、必然事件是两回事。

依概率收敛是说随着n增大,越来越收敛。
以概率为1收敛是说n足够大,可以“一样”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值