概率论基础知识整理(二)

随机变量

  • 设随机试验的样本空间为S={e},X=X(e)是定义在S上的实值单值函数,则X=X(e)为随机变量
  • 设随机试验的样本空间为S={e},X=X(e)和Y=Y(e)是定义在S上的随机变量,则由它们构成的一个向量(X,Y)为二维随机变量,其性质不仅与X,Y有关,还依赖于两个随机变量的相互关系

离散型随机变量及其分布律

  • 离散型随机变量:全部可能取到的值是有限个或可列无限多个
  • 分布律:设离散型随机变量 X X X所有可能取值为 x k x_k xk (k=1,2…), X X X取各个可能值的概率为P{ X X X= x k x_k xk}= p k p_k pk,k=1,2…
  • p k p_k pk≥0,k=1,2…
  • ∑ k = 1 ∞ p k = 1 \sum_{k=1}^\infty p_k =1 k=1pk=1
  • 联合分布律:P{ X X X= x i x_i xi, Y Y Y= y j y_j yj}= p i j {p_i}_j pij,i,j=1,2…

(0-1)分布/两点分布

  • 随机变量 X X X只能取到0与1两个值, P P P{ X = k X=k X=k} = p k ( 1 − p ) 1 − k =p^k{(1-p)}^{1-k} =pk(1p)1k,k=0,1(0< p p p<1)

二项分布

  • 伯努利实验:试验E只有两种可能结果,P( A A A)= p p p,P( A ˉ \bar A Aˉ)=1- p p p
  • n重伯努利实验:将E独立重复进行n次
  • X表示n重伯努利实验中事件A发生的次数
  • P P P{ X X X= k k k}= ( n k ) p k ( 1 − p ) n − k {n \choose k}p^k{(1-p)}^{n-k} (kn)pk(1p)nk,k=0,1,2,…,n
  • ( n k ) p k ( 1 − p ) n − k {n \choose k}p^k{(1-p)}^{n-k} (kn)pk(1p)nk刚好是二项式 ( p + q ) n (p+q)^n (p+q)n的展开式中出现 p k p^k pk的那一项,称 X X X服从参数为 n , p n,p n,p二项分布,记为 X ∼ b ( n , p ) X\sim b(n,p) Xb(n,p)
  • n=1时,二项分布化为两点分布

泊松分布

在这里插入图片描述

记为 X ∼ π ( λ ) X\sim π(λ) Xπ(λ)

泊松定理:
在这里插入图片描述

分布函数

一维

  • X是一个随机变量,x是任意实数,分布函数 F ( x ) = P { X ≤ x } F(x)=P\{ X≤x\} F(x)=P{Xx}, ∞ < x < − ∞ \infty<x<-\infty <x<
  • P { x 1 ≤ X ≤ x 2 } = P { X ≤ x 2 } − P { X ≤ x 1 } = F ( x 2 ) − F ( x 1 ) P\{ x_1≤X≤x_2\}=P\{ X≤x_2\}-P\{ X≤x_1\}=F(x_2)-F(x_1) P{x1Xx2}=P{Xx2}P{Xx1}=F(x2)F(x1)
  • 如果将 X X X看成数轴上的随机点的坐标,那么 F ( x ) F(x) F(x) x x x处的函数值就表示 X X X落在区间 ( − ∞ , x ] (-∞,x] ,x]上的概率

性质

  1. F ( x ) F(x) F(x)是不减函数
  2. 0 ≤ F ( x ) ≤ 1 , F ( − ∞ ) = 0 , F ( ∞ ) = 1 0≤F(x)≤1,F(-∞)=0, F(∞)=1 0F(x)1F()=0,F()=1
  3. F ( x + 0 ) = F ( x ) F(x+0)=F(x) F(x+0)=F(x),即 F ( x ) F(x) F(x)是右连续的

二维

  • 二维随机变量 ( x , y ) (x,y) (x,y)的分布函数或称联合分布函数 F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{ X≤x,Y≤y\} F(x,y)=P{Xx,Yy}
  • 随机点 ( x , y ) (x,y) (x,y)落在矩形域的概率为 P { x 1 ≤ X ≤ x 2 , y 1 ≤ Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\{ x_1≤X≤x_2,y_1≤Y≤y_2\}=F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1) P{x1Xx2,y1Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)(借助图形)

性质

  1. F ( x , y ) F(x,y) F(x,y)是不减函数
  2. 0 ≤ F ( x , y ) ≤ 1 , F ( − ∞ , − ∞ ) = 0 , F ( ∞ , ∞ ) = 1 0≤F(x,y)≤1,F(-∞,-∞)=0, F(∞,∞)=1 0F(x,y)1F(,)=0,F(,)=1;对于任意固定的 y , F ( − ∞ , y ) = 0 y,F(-∞,y)=0 yF(,y)=0,对于任意固定的 x , F ( x , − ∞ ) = 0 x,F(x,-∞)=0 xF(x,)=0
  3. F ( x + 0 , y ) = F ( x , y ) , F ( x , y + 0 ) = F ( x , y ) F(x+0,y)=F(x,y), F(x,y+0)=F(x,y) F(x+0,y)=F(x,y),F(x,y+0)=F(x,y),即 F ( x , y ) F(x,y) F(x,y)关于 x x x右连续,关于 y y y右连续

连续型随机变量及其概率密度

一维

  • 若存在概率密度 f ( x ) f(x) f(x)满足 F ( x ) = ∫ − ∞ x f ( t ) d t F(x)=∫_{-∞}^xf(t)dt F(x)=xf(t)dt,则 X X X连续型随机变量

性质

  1. f ( x ) ≥ 0 f(x)≥0 f(x)0
  2. ∫ − ∞ ∞ f ( t ) d t = 1 ∫_{-∞}^∞f(t)dt=1 f(t)dt=1
  3. P { x 1 ≤ X ≤ x 2 } = F ( x 2 ) − F ( x 1 ) = ∫ x 1 x 2 f ( t ) d t P\{ x_1≤X≤x_2\}=F(x_2)-F(x_1)=∫_{x_1}^{x_2}f(t)dt P{x1Xx2}=F(x2)F(x1)=x1x2f(t)dt
  4. f ( x ) f(x) f(x)在点 x x x处连续,则 F ′ ( x ) = f ( x ) F'(x)=f(x) F(x)=f(x)

三种重要的连续型随机变量

  • 均匀分布:记作 X X X~ U ( a , b ) U(a,b) U(a,b)
    在这里插入图片描述
    在这里插入图片描述
  • 指数分布
    在这里插入图片描述
    在这里插入图片描述
  • 正态分布:记作
    在这里插入图片描述
    在这里插入图片描述

二维

  • 若存在联合概率密度 f ( x , y ) f(x,y) f(x,y)满足 F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v F(x,y)=∫_{-∞}^y∫_{-∞}^xf(u,v)dudv F(x,y)=yxf(u,v)dudv,则 ( X , Y ) (X,Y) (X,Y)连续型的二维随机变量

性质

  1. f ( x , y ) ≥ 0 f(x,y)≥0 f(x,y)0
  2. ∫ − ∞ ∞ ∫ − ∞ ∞ f ( x , y ) d x d y = F ( ∞ , ∞ ) = 1 ∫_{-∞}^∞∫_{-∞}^∞f(x,y)dxdy=F(∞,∞)=1 f(x,y)dxdy=F(,)=1
  3. ( x , y ) (x,y) (x,y)落在 G G G内的概率为 P { ( X , Y ) ∈ G } = ∫ ∫ G f ( x , y ) d x d y P\{ (X,Y)∈G\}=∫∫_Gf(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy
  4. f ( x , y ) f(x,y) f(x,y)在点 ( x , y ) (x,y) (x,y)处连续,则 F ′ ′ ( x , y ) = f ( x , y ) F''(x,y)=f(x,y) F(x,y)=f(x,y)

随机变量的函数的分布

  • Y = g ( X ) Y=g(X) Y=g(X)是连续型随机变量,其概率密度为
    f Y ( y ) = f X [ h ( y ) ] ∣ h ′ ( y ) ∣ , α < y < β f_Y(y)=f_X[h(y)]|h'(y)|,α<y<β fY(y)=fX[h(y)]h(y),α<y<β
    f Y ( y ) = 0 , o t h e r w i s e f_Y(y)=0, otherwise fY(y)=0,otherwise
    其中 α = m i n { g ( − ∞ ) , g ( ∞ ) } , β = m a x { g ( − ∞ ) , g ( ∞ ) } , h ( y ) α=min\{g(-∞),g(∞)\}, β=max\{g(-∞),g(∞)\},h(y) α=min{g(),g()},β=max{g(),g()},h(y) g ( x ) g(x) g(x)反函数

边缘分布

  • 边缘分布函数:二维随机变量 ( x , y ) (x,y) (x,y)作为一个整体,具有分布函数 F ( x , y ) F(x,y) F(x,y),而他们各自也有分布函数,记为 F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y)
  • 边缘分布律
    在这里插入图片描述
  • 边缘概率密度
    f X ( x ) = ∫ − ∞ ∞ f ( x , y ) d y f_X(x)=∫_{-∞}^∞f(x,y)dy fX(x)=f(x,y)dy
    f Y ( x ) = ∫ − ∞ ∞ f ( x , y ) d x f_Y(x)=∫_{-∞}^∞f(x,y)dx fY(x)=f(x,y)dx

二维条件分布

  • Y = y i Y=y_i Y=yi条件下随机变量 X X X的条件分布律

在这里插入图片描述

概率论基础知识整理(三)

  • 3
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值