多项式概率分布(Multinomial probability distribution)和分类分布(categorical distribution)

本文介绍了多项式概率分布和分类分布的概念,从二项分布出发,阐述了如何从两种状态推广到多种状态的情况。通过Python的torch库展示了多项分布和分类分布的实战操作,包括进行多次实验并观察不同状态出现的次数。此外,还探讨了分类分布作为多项式分布的特殊情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多项式概率分布

其由二项分布推广而来,从而更加普遍。所以我们先回顾一下二项分布。

二项分布的典型例子是扔硬币,设硬币正面朝上概率为 p p p, 重复扔 n n n次硬币,记硬币正面朝上的次数为 X X X,显然 X X X是一个随机变量,且服从二项分布,即 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

把二项分布推广至两种以上的状态,就得到了多项分布。

比如做一次实验,结果有k种可能,各自的概率为 ( p 1 , … , p k ) (p_1,\ldots ,p_k) (p1,,pk),同样,重复做n次实验,记各种状态出现的次数为 ( X 1 , … , X k ) (X_1,\ldots ,X_k) (X1,,Xk),显然,这些都是随机变量,且服从多项分布,即 ( X 1 , … , X k ) ∼ P N ( n : p 1 , … , p k ) (X_1,\ldots ,X_k)\sim PN(n:p_1,\ldots ,p_k) (X1,,Xk)PN(np1,,pk),显然有关系: X 1 + … + X k = n X_1+\ldots +X_k=n X1++Xk=n,另外,其中PN即poly nomial的意思,也是多项式的意思。

python实战:

import torch
p=torch.tensor([0.2,0.1,0.7])
torch.multinomial(p,2,replacement=True)#表示进行两次重复实验,各个状态的概率分布是p

我们重复运行两次,得到如下结果:
在这里插入图片描述
上面表示第一次得到了0.2概率的那个状态,第二次得到了0.7概率的那个状态。下面这个同样分析。
在这里插入图片描述

分类分布

分类分布(categorical distribution)好简单,就是多项式概率分布的特殊情况,即n=1的时候;另外一个观点就是扩展了的两点分布,也即扩展了的伯努利分布。

import torch
p=torch.tensor([0.2,0.1,0.7])
torch.multinomial(p,1,replacement=True)#取n=1就是分类分布。

在这里插入图片描述

或者,torch里面有一个专门的分类分布,有兴趣可以看看。

cdis=tdc.Categorical(torch.tensor([0.2,0.1,0.7]))
cdis.sample()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

音程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值