pytorch练习实例——手写数字识别(CNN网络+MNIST数据集)

本文通过PyTorch实现手写数字识别,使用CNN网络结合MNIST数据集进行训练。在VSCode中运行时解决模块导入问题,并展示如何用训练好的模型进行测试及自定义CNN结构。
摘要由CSDN通过智能技术生成

训练数据得到模型:
VScode运行:途中还遇到一个小问题,有些torch内的模块无法导入,解决方法:

#VSCode中pytorch出现'torch' has no member 'xxx'的错误
https://blog.csdn.net/qq_34403736/article/details/84726504
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms

# Device configuration
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

# Hyper parameters
num_epochs = 5
num_classes = 10
batch_size = 100
learning_rate = 0.001

# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='data/',
                                           train=True,
                                           transform=transforms.ToTensor(),
                                           download=True)

test_dataset = torchvision.datasets.MNIST(root='data/',
                                          train=False,
                                          transform=transforms.ToTensor())

# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True)

test_loa
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值