一.算法的最优、最差和平均效率
1.最差效率Big O
把函数t(n)包含在O(g(n)),记作t(n)
∈
\in
∈O(g(n));其成立条件为对于所有足够大的n,t(n)的上界由g(n)的常数倍确定,即存在大于0的常数c和非负的整数n0,使得:
对于所有的n
≥
\geq
≥n0,都有t(n)
≤
\leq
≤cg(n)
性质:
- O(kf(n)) = O(f(n)),其中k为常量
- O(f(n))+O(g(n)) = max(O(f(n)),O(g(n)))
- O(f(n))*O(g(n)) = O(f(n)*g(n))
2.最优效率Big Ω
把函数t(n)包含在Ω(g(n)),记作t(n)
∈
\in
∈Ω(g(n));其成立条件为对于所有足够大的n,t(n)的上界由g(n)的常数倍确定,即存在大于0的常数c和非负的整数n0,使得:
对于所有的n
≥
\geq
≥n0,都有t(n)
≥
\geq
≥cg(n)
3.平均效率Big
Θ
\Theta
Θ
二.时间复杂度的计算
T(n)为单调递增函数,且有T(n)=aT(n/b)+f(n),f(n) —> θ \theta θ(nd),则有
- 若a<bd,T(n)= θ \theta θ(nd)
- 若a=bd,T(n)= θ \theta θ(ndlogn)
- 若a>bd,T(n)= θ \theta θ( n l o g b a n^{log_b{a}} nlogba)
典型例题
提示:令n=3k,
答案为T(n)=
θ
\theta
θ(loglogn)
提示:根据递归树求得规律,
答案为T(n)=
θ
\theta
θ(n2log2n)