服务器conda+pytorch安装教程

1.去清华镜像源下载新版anaconda

https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

下载后放入服务器的自己data文件夹下

 2.安装

bash Anaconda3-xxxxx-Linux-x86_64.sh

一直按回车,直到出现:

输入yes

这一步为安装目录,建议安装在data下如图:

 回车等待安装,最后一步会弹出这个框,

输入yes即可。

3.添加清华镜像源

进入自己的home文件夹,找到.condarc文件,打开。输入以下代码

channels:
  - defaults
show_channel_urls: true
default_channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
  conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
  simpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 保存后关闭即可。

若无.condarc文件,在终端输入vim ~/.condarc。接着输入上面的代码段保存退出即可。附上vim保存退出教程https://jingyan.baidu.com/article/6fb756ec72b031241858fb90.html

接着在终端依次输入:

conda clean -i
conda config --set show_channel_urls yes
conda config --set channel_priority flexible

如图所示:

4.创建虚拟环境

首先输入

nvidia-smi

查看cuda最高版本。

再根据下表选择对应的python版本。

 因为cuda版本为10.1,这里的选择是3.8版本的python(.8服务器cuda为10.0)

输入如下代码,即可创建虚拟环境

conda create -n py python=3.8

出现上图后 按y即可。

出现该指令说明成功安装。

 

5.进入虚拟环境:

输入(每次训练都要输入该指令),会发现我们的环境变成py

conda activate py

 6.安装torch

进入pytorch官网。寻找对应版本的指令。

以我为例:我是10.1的CUDA与3.8的python,在根据第四步中的对应图,我选择的是

conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch

 输入后就可以成功安装啦。

附录:

因为我也是新手,安装过程中踩了不少坑,特此留下笔记。感谢林师兄的帮助,本文基于林师兄的CSDN进行补充。

参考:

https://blog.csdn.net/weixin_49643423/article/details/108896440

pytorch 不同版本对应的cuda - cltt - 博客园

你好!关于你的问题,如果使用Miniconda安装PyTorch无效,有几个可能的原因和解决方法: 1. 安装问题:首先确保你使用的是正确的安装命令。在Miniconda环境下,可以使用以下命令安装PyTorch: ``` conda install pytorch torchvision torchaudio cudatoolkit=<version> -c pytorch ``` 其中 `<version>` 需要替换为你所需的CUDA版本号(如果使用CPU版本则不需要指定)。另外,你也可以在PyTorch官方网站上查找适合你系统配置的安装命令。 2. 环境兼容性问题:确保你的系统满足PyTorch的要求。PyTorch对操作系统、CUDA版本和Python版本都有一定的要求,你需要检查这些要求是否与你的系统相匹配。例如,某些版本的PyTorch可能不支持较旧的CUDA驱动程序或Python版本。 3. 安装源问题:尝试更改安装源。有时候,由于网络问题或源服务器问题,安装可能会失败。你可以尝试切换到其他可靠的源来进行安装。例如,可以尝试使用清华大学的Anaconda镜像源: ``` conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes ``` 4. 系统依赖问题:在安装PyTorch之前,确保你的系统已经安装了必要的依赖项,如CUDA驱动程序、C++编译器等。你可以参考PyTorch官方文档中的系统要求以及安装说明来检查和安装这些依赖项。 如果你仍然遇到问题,请提供更多的错误信息和详细的环境配置,以便我能够更好地帮助你解决问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值