# 极化椭圆方程

SAR学习 专栏收录该内容
2 篇文章 0 订阅

$E\left ( z \right )=E_{x}\left ( z \right )e_{x}+E_{y}\left ( z \right )e_{y}$

$E_{x}\left ( z \right )=E_{x}e^{-jkz}=E_{x}_{0}e^{-jkz}e^{j\delta _{x}}e_{x}$

$E_{y}\left ( z \right )=E_{y}e^{-jkz}=E_{y}_{0}e^{-jkz}e^{j\delta _{y}}e_{y}$

$E_{x}\left ( z,t \right )=\Re \left ( E_{x} \right \left ( z \right )e^{-j\omega t})=\Re \left ( E_{x}e^{-jkz}e^{j\omega t} \right )=E_{x0}cos\left ( \omega t-kz+\delta _{x} \right )$       ①

$E_{y}\left ( z,t \right )=\Re \left ( E_{y} \right \left ( z \right )e^{-j\omega t})=\Re \left ( E_{y}e^{-jkz}e^{j\omega t} \right )=E_{y0}cos\left ( \omega t-kz+\delta _{y} \right )$       ②

$\frac{E_{x}}{E_{x0}}=cos\left ( \omega t-kz+\delta _{x} \right )=cos\left ( \omega t-kz \right )cos\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{x}$                         ③

$\frac{E_{y}}{E_{y0}}=cos\left ( \omega t-kz+\delta _{y} \right )=cos\left ( \omega t-kz \right )cos\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{y}$                         ④

$\frac{E_{x}}{E_{x0}}sin\delta _{y}=cos\left ( \omega t-kz \right )cos\delta _{x}sin\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{x}sin\delta _{y}$                                  ⑤

$\frac{E_{x}}{E_{x0}}sin\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{y}sin\delta _{x}$                                  ⑥

⑤⑥两式相减，消去同项，并进行三角变换，得到：

$\frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{x}sin\delta _{y}-cos\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}$

$=cos\left ( \omega t-kz \right )(cos\delta _{x}sin\delta _{y}-cos\delta _{y}sin\delta _{x})$

$=cos\left ( \omega t-kz \right )sin(\delta _{y}-\delta _{x})$                                                            ⑦

$\frac{E_{x}}{E_{x0}}cos\delta _{y}=cos\left ( \omega t-kz \right )cos\delta _{x}cos\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{x}cos\delta _{y}$                                   ⑧

$\frac{E_{x}}{E_{x0}}cos\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{y}cos\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{y}cos\delta _{x}$                                   ⑨

⑧⑨两式相减，消去同项，并进行三角变换，得到：

$\frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x}=sin\left ( \omega t-kz \right )sin\delta _{y}cos\delta _{x}-sin\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}$

$=sin\left ( \omega t-kz \right )(sin\delta _{y}cos\delta _{x}-cos\delta _{y}sin\delta _{x})$

$=sin\left ( \omega t-kz \right )sin(\delta _{y}-\delta _{x})$                                                           ⑩

$\left ( \frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x} \right )^{2}+\left ( \frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x} \right )^{2}$

$=cos^{2}\left ( \omega t-kz \right )sin^{2}(\delta _{y}-\delta _{x})+sin^{2}\left ( \omega t-kz \right )sin^{2}(\delta _{y}-\delta _{x})$

$=sin^{2}(\delta _{y}-\delta _{x})(cos^{2}\left ( \omega t-kz \right )+sin^{2}\left ( \omega t-kz \right ))$

$=sin^{2}(\delta _{y}-\delta _{x})$

$\delta _{0}=\delta _{y}-\delta _{x}$，则上式转化为：

$\left ( \frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x} \right )^{2}+\left ( \frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x} \right )^{2}=sin^{2}\delta _{0}$

$A=\frac{E_{x}}{E_{x0}} B=\frac{E_{y}}{E_{y0}}$，则上式可以写为：

$\left ( Asin\delta _{y}-Bsin\delta _{x} \right )^{2}+\left ( Acos\delta _{y}-Bcos\delta _{x} \right )^{2}=sin^{2}\delta _{0}$

$A^{2}sin^{2}\delta _{y}-2ABsin\delta _{y}sin\delta _{x}+B^{2}sin^{2}\delta _{x}+A^{2}cos^{2}\delta _{y}-2ABcos\delta _{y}cos\delta _{x}+B^{2}cos^{2}\delta _{x}=sin^{2}\delta _{0}$

$A^{2}-2ABsin\delta _{y}sin\delta _{x}+B^{2}-2ABcos\delta _{y}cos\delta _{x}=sin^{2}\delta _{0}$

$A^{2}+B^{2}-2AB(sin\delta _{y}sin\delta _{x}+cos\delta _{y}cos\delta _{x})=sin^{2}\delta _{0}$

$A^{2}+B^{2}-2ABcos(\delta _{x}-\delta _{y})=sin^{2}\delta _{0}$

$A^{2}+B^{2}-2ABcos\delta _{0}=sin^{2}\delta _{0}$

$\left (\frac{E_{x}}{E_{x0}} \right )^{2}+\left ( \frac{E_{y}}{E_{y0}} \right )^{2}-2\frac{E_{x}}{E_{x0}} \frac{E_{y}}{E_{y0}}cos\delta _{0}=sin^{2}\delta _{0}$

• 0
点赞
• 1
评论
• 6
收藏
• 打赏
• 扫一扫，分享海报

07-19 519
11-09 1035
01-16 2957
01-19

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。