极化椭圆方程

SAR学习 专栏收录该内容
2 篇文章 0 订阅

椭圆极化公式的推导:

沿+z方向传播的电磁波,其电场矢量在x-y平面内的分量分别表示为E_{x}E_{y}

E\left ( z \right )=E_{x}\left ( z \right )e_{x}+E_{y}\left ( z \right )e_{y}

E_{x}\left ( z \right )=E_{x}e^{-jkz}=E_{x}_{0}e^{-jkz}e^{j\delta _{x}}e_{x}

E_{y}\left ( z \right )=E_{y}e^{-jkz}=E_{y}_{0}e^{-jkz}e^{j\delta _{y}}e_{y}

式中,e_{x}e_{y}分别表示x,y方向上的单位矢量,δ表示相位,k表示波数,E_{x}\left ( z \right )E_{y}\left ( z \right )分别表示电磁波在x,y方向上的复分量,其幅度分别为\left | E_{x} \right |=E_{x0}\left | E_{y} \right |=E_{y0}

在 t 时刻,E_{x}\left ( z \right )E_{y}\left ( z \right )的电场瞬时值为:
 

E_{x}\left ( z,t \right )=\Re \left ( E_{x} \right \left ( z \right )e^{-j\omega t})=\Re \left ( E_{x}e^{-jkz}e^{j\omega t} \right )=E_{x0}cos\left ( \omega t-kz+\delta _{x} \right )       ①

E_{y}\left ( z,t \right )=\Re \left ( E_{y} \right \left ( z \right )e^{-j\omega t})=\Re \left ( E_{y}e^{-jkz}e^{j\omega t} \right )=E_{y0}cos\left ( \omega t-kz+\delta _{y} \right )       ②

式中,\Re \left ( \cdot \right )代表复数的实部,\omega代表角速度

开始变换了!

将上两式中幅度量移动至等号的左边,并做初步的三角函数拆分,得到:

\frac{E_{x}}{E_{x0}}=cos\left ( \omega t-kz+\delta _{x} \right )=cos\left ( \omega t-kz \right )cos\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{x}                         ③

\frac{E_{y}}{E_{y0}}=cos\left ( \omega t-kz+\delta _{y} \right )=cos\left ( \omega t-kz \right )cos\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{y}                         ④

对③乘以sin\delta _{y},④乘以sin\delta _{x},得到:

\frac{E_{x}}{E_{x0}}sin\delta _{y}=cos\left ( \omega t-kz \right )cos\delta _{x}sin\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{x}sin\delta _{y}                                  ⑤

\frac{E_{x}}{E_{x0}}sin\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{y}sin\delta _{x}                                  ⑥

⑤⑥两式相减,消去同项,并进行三角变换,得到:

\frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{x}sin\delta _{y}-cos\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}

                                    =cos\left ( \omega t-kz \right )(cos\delta _{x}sin\delta _{y}-cos\delta _{y}sin\delta _{x})

                                    =cos\left ( \omega t-kz \right )sin(\delta _{y}-\delta _{x})                                                            ⑦

对③乘以cos\delta _{y},④乘以cos\delta _{x},得到:

\frac{E_{x}}{E_{x0}}cos\delta _{y}=cos\left ( \omega t-kz \right )cos\delta _{x}cos\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{x}cos\delta _{y}                                   ⑧

\frac{E_{x}}{E_{x0}}cos\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{y}cos\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{y}cos\delta _{x}                                   ⑨

⑧⑨两式相减,消去同项,并进行三角变换,得到:

\frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x}=sin\left ( \omega t-kz \right )sin\delta _{y}cos\delta _{x}-sin\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}

                                    =sin\left ( \omega t-kz \right )(sin\delta _{y}cos\delta _{x}-cos\delta _{y}sin\delta _{x})

                                     =sin\left ( \omega t-kz \right )sin(\delta _{y}-\delta _{x})                                                           ⑩

令⑦与⑩的左右两边平方后相加:

 

\left ( \frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x} \right )^{2}+\left ( \frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x} \right )^{2}

=cos^{2}\left ( \omega t-kz \right )sin^{2}(\delta _{y}-\delta _{x})+sin^{2}\left ( \omega t-kz \right )sin^{2}(\delta _{y}-\delta _{x})

=sin^{2}(\delta _{y}-\delta _{x})(cos^{2}\left ( \omega t-kz \right )+sin^{2}\left ( \omega t-kz \right ))

=sin^{2}(\delta _{y}-\delta _{x})                                                                                                                       

 

\delta _{0}=\delta _{y}-\delta _{x},则上式转化为:

\left ( \frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x} \right )^{2}+\left ( \frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x} \right )^{2}=sin^{2}\delta _{0}

等式的左边打出来稍微复杂,做一个简单的代换:

A=\frac{E_{x}}{E_{x0}} B=\frac{E_{y}}{E_{y0}},则上式可以写为:

\left ( Asin\delta _{y}-Bsin\delta _{x} \right )^{2}+\left ( Acos\delta _{y}-Bcos\delta _{x} \right )^{2}=sin^{2}\delta _{0}

A^{2}sin^{2}\delta _{y}-2ABsin\delta _{y}sin\delta _{x}+B^{2}sin^{2}\delta _{x}+A^{2}cos^{2}\delta _{y}-2ABcos\delta _{y}cos\delta _{x}+B^{2}cos^{2}\delta _{x}=sin^{2}\delta _{0}

A^{2}-2ABsin\delta _{y}sin\delta _{x}+B^{2}-2ABcos\delta _{y}cos\delta _{x}=sin^{2}\delta _{0}

A^{2}+B^{2}-2AB(sin\delta _{y}sin\delta _{x}+cos\delta _{y}cos\delta _{x})=sin^{2}\delta _{0}

A^{2}+B^{2}-2ABcos(\delta _{x}-\delta _{y})=sin^{2}\delta _{0}

A^{2}+B^{2}-2ABcos\delta _{0}=sin^{2}\delta _{0}

把AB往回带入,就得到最终的椭圆极化方程了!

\left (\frac{E_{x}}{E_{x0}} \right )^{2}+\left ( \frac{E_{y}}{E_{y0}} \right )^{2}-2\frac{E_{x}}{E_{x0}} \frac{E_{y}}{E_{y0}}cos\delta _{0}=sin^{2}\delta _{0}

 

 

 

 

  • 0
    点赞
  • 1
    评论
  • 6
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 1 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:游动-白 设计师:我叫白小胖 返回首页

打赏作者

山禾拾光

理解啦

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值