极化椭圆方程

椭圆极化公式的推导:

沿+z方向传播的电磁波,其电场矢量在x-y平面内的分量分别表示为E_{x}E_{y}

E\left ( z \right )=E_{x}\left ( z \right )e_{x}+E_{y}\left ( z \right )e_{y}

E_{x}(z)=E_{x}e^{-jkz}=E_{x_{0}}e^{-jkz}e^{j\delta _{x}}e_{x}

 E_{y}(z)=E_{y}e^{-jkz}=E_{y_{0}}e^{-jkz}e^{j\delta _{y}}e_{y}

式中,e_{x}e_{y}分别表示x,y方向上的单位矢量,δ表示相位,k表示波数,E_{x}\left ( z \right )E_{y}\left ( z \right )分别表示电磁波在x,y方向上的复分量,其幅度分别为\left | E_{x} \right |=E_{x0}\left | E_{y} \right |=E_{y0}

在 t 时刻,E_{x}\left ( z \right )E_{y}\left ( z \right )的电场瞬时值为:
 

E_{x}(z,t)=\Re (E_{x}(z)e^{-j\omega t})=\Re (E_{x}e^{-jkz}e^{j\omega t})=E_{x_{0}}cos(\omega t-kz+\delta _{x})        ①

E_{y}(z,t)=\Re (E_{y}(z)e^{-j\omega t})=\Re (E_{y}e^{-jkz}e^{j\omega t})=E_{y_{0}}cos(\omega t-kz+\delta _{y})         ②

式中,\Re \left ( \cdot \right )代表复数的实部,\omega代表角速度

开始变换了!

将上两式中幅度量移动至等号的左边,并做初步的三角函数拆分,得到:

\frac{E_{x}}{E_{x0}}=cos\left ( \omega t-kz+\delta _{x} \right )=cos\left ( \omega t-kz \right )cos\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{x}                         ③

\frac{E_{y}}{E_{y0}}=cos\left ( \omega t-kz+\delta _{y} \right )=cos\left ( \omega t-kz \right )cos\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{y}                         ④

对③乘以sin\delta _{y},④乘以sin\delta _{x},得到:

\frac{E_{x}}{E_{x0}}sin\delta _{y}=cos\left ( \omega t-kz \right )cos\delta _{x}sin\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{x}sin\delta _{y}                                  ⑤

\frac{E_{x}}{E_{x0}}sin\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{y}sin\delta _{x}                                  ⑥

⑤⑥两式相减,消去同项,并进行三角变换,得到:

\frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{x}sin\delta _{y}-cos\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}

                                    =cos\left ( \omega t-kz \right )(cos\delta _{x}sin\delta _{y}-cos\delta _{y}sin\delta _{x})

                                    =cos\left ( \omega t-kz \right )sin(\delta _{y}-\delta _{x})                                                            ⑦

对③乘以cos\delta _{y},④乘以cos\delta _{x},得到:

\frac{E_{x}}{E_{x0}}cos\delta _{y}=cos\left ( \omega t-kz \right )cos\delta _{x}cos\delta _{y}-sin\left ( \omega t-kz \right )sin\delta _{x}cos\delta _{y}                                   ⑧

\frac{E_{x}}{E_{x0}}cos\delta _{x}=cos\left ( \omega t-kz \right )cos\delta _{y}cos\delta _{x}-sin\left ( \omega t-kz \right )sin\delta _{y}cos\delta _{x}                                   ⑨

⑧⑨两式相减,消去同项,并进行三角变换,得到:

\frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x}=sin\left ( \omega t-kz \right )sin\delta _{y}cos\delta _{x}-sin\left ( \omega t-kz \right )cos\delta _{y}sin\delta _{x}

                                    =sin\left ( \omega t-kz \right )(sin\delta _{y}cos\delta _{x}-cos\delta _{y}sin\delta _{x})

                                     =sin\left ( \omega t-kz \right )sin(\delta _{y}-\delta _{x})                                                           ⑩

令⑦与⑩的左右两边平方后相加:

\left ( \frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x} \right )^{2}+\left ( \frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x} \right )^{2}

=cos^{2}\left ( \omega t-kz \right )sin^{2}(\delta _{y}-\delta _{x})+sin^{2}\left ( \omega t-kz \right )sin^{2}(\delta _{y}-\delta _{x})

=sin^{2}(\delta _{y}-\delta _{x})(cos^{2}\left ( \omega t-kz \right )+sin^{2}\left ( \omega t-kz \right ))

=sin^{2}(\delta _{y}-\delta _{x})                                                                                                                       

\delta _{0}=\delta _{y}-\delta _{x},则上式转化为:

\left ( \frac{E_{x}}{E_{x0}}sin\delta _{y}-\frac{E_{y}}{E_{y0}}sin\delta _{x} \right )^{2}+\left ( \frac{E_{x}}{E_{x0}}cos\delta _{y}-\frac{E_{y}}{E_{y0}}cos\delta _{x} \right )^{2}=sin^{2}\delta _{0}

等式的左边打出来稍微复杂,做一个简单的代换:

A=\frac{E_{x}}{E_{x0}} B=\frac{E_{y}}{E_{y0}},则上式可以写为:

\left ( Asin\delta _{y}-Bsin\delta _{x} \right )^{2}+\left ( Acos\delta _{y}-Bcos\delta _{x} \right )^{2}=sin^{2}\delta _{0}

A^{2}sin^{2}\delta _{y}-2ABsin\delta _{y}sin\delta _{x}+B^{2}sin^{2}\delta _{x}+A^{2}cos^{2}\delta _{y}-2ABcos\delta _{y}cos\delta _{x}+B^{2}cos^{2}\delta _{x}=sin^{2}\delta _{0}

A^{2}-2ABsin\delta _{y}sin\delta _{x}+B^{2}-2ABcos\delta _{y}cos\delta _{x}=sin^{2}\delta _{0}

A^{2}+B^{2}-2AB(sin\delta _{y}sin\delta _{x}+cos\delta _{y}cos\delta _{x})=sin^{2}\delta _{0}

A^{2}+B^{2}-2ABcos(\delta _{x}-\delta _{y})=sin^{2}\delta _{0}

A^{2}+B^{2}-2ABcos\delta _{0}=sin^{2}\delta _{0}

把AB往回带入,就得到最终的椭圆极化方程了!

\left (\frac{E_{x}}{E_{x0}} \right )^{2}+\left ( \frac{E_{y}}{E_{y0}} \right )^{2}-2\frac{E_{x}}{E_{x0}} \frac{E_{y}}{E_{y0}}cos\delta _{0}=sin^{2}\delta _{0}

  • 6
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值