安装并使用mRMR算法进行特征筛选

安装python库,使用教程,详见地址:mrmr-selection

进入虚拟环境,输入命令安装库:

pip install mrmr_selection

### mRMR算法原理 mRMR(最大相关最小冗余)算法是一种经典的特征选择方法,旨在挑选与目标变量关联性强而相互间冗余度低的特征。此法通过衡量各输入属性同输出标签间的互信息量以及它们两两之间的依赖程度来进行筛选[^3]。 具体而言,对于给定的数据集D={X,Y},其中X表示样本空间,Y为类别标记向量;设F_i∈X是一个候选特征,则有: - **最大化相关性**:寻找使I(F_i; Y)最大的特征,这里I(· ; · )定义了两个随机变量间的互信息; - **最小化冗余性**:确保所选特征集合S内的成员尽可能独立,即求解min(I(F_i; F_j)),∀F_i, F_j ∈ S且i≠j。 最终目的是找到一组既能很好表征响应变量又能保持内部差异性的特征子集。 ### Python实现案例 下面给出一段Python代码片段用于展示如何运用`sklearn-contrib`库下的`pymrmr`模块实施mRMR特征选择操作: ```python import pandas as pd from sklearn.datasets import load_breast_cancer from pymrmr import mRMR # 加载乳腺癌数据集作为例子 data = load_breast_cancer() df = pd.DataFrame(data.data, columns=data.feature_names) # 添加目标列 target = 'target' df[target] = data.target # 应用mRMR进行特征选择 selected_features = mRMR(df, target=target, method='MIQ', n_selected=10) print(f'Selected features are {selected_features}') ``` 上述脚本首先创建了一个DataFrame对象存储来自scikit-learn自带的乳腺癌诊断数据集的信息,接着调用了`mRMR()`函数指定了要保留的最佳特征数量(`n_selected`)及其他参数完成实际的选择流程[^1]。 ### 机器学习中的应用价值 在监督式学习框架内,有效的特征工程可以显著改善预测效果简化后续建模工作。采用像mRMR这样的策略可以帮助去除无关紧要甚至可能引起噪声干扰的因素,进而增强模型稳定性、加快训练速度且减轻维数灾难带来的困扰[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Trouville01

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值