函数:pearsonr(x,y) 功能: 计算特征与目标变量之间的相关度 参数说明: 输入:x为特征,y为目标变量.输出:r: 相关系数 [-1,1]之间,p-value: p值。 注: p值越小,表示相关系数越显著,一般p值在500个样本以上时有较高的可靠性。 python实现 import numpy as np from scipy.stats import pearsonr import random np.random.seed(0) size=300 x=np.random.normal(0,1,size) print "Lower noise",pearsonr(x,x+np.random.normal(0,1,size)) print "Higher noise",pearsonr(x,x+np.random.normal(0,10,size)) 输出: Lower noise (0.71824836862138408, 7.3240173129983507e-49) Higher noise (0.057964292079338155, 0.31700993885324752)