12、阈值分割基础理论

一、阈值分割

  • 阈值分割法是一种基于区域的图像分割技术,原理是把图像象素点分为若干类。

  • 图像阈值化的目的是要按照灰度级,对像素集合进行一个划分,得到的每个子集形成一个与现实景物相对应的区域,各个区域内部具有一致的属性,而相邻区域不具有这种一致属性。这样的划分可以通过从灰度级出发选取一个或多个阈值来实现。

二、常见的 5 种阈值分割法

2.1、 二进制阈值化

  • 分割原理:先要选定一个特定的阈值,比如:127;新的阈值产生规则为:

    大于或者等于 127 的像素点的灰度值设定为最大值(如 8位灰度值最大为255);

    灰度值小于 127 的像素点的灰度值设定为 0。

  • 公式: d s t ( x , y ) = { max ⁡ V A L src ⁡ ( x , y ) ≥  thread  0  othersize  d s t(x, y)=\left\{\begin{array}{cc}\max V A L & \operatorname{src}(x, y) \geq \text { thread } \\ 0 & \text { othersize }\end{array}\right. dst(x,y)={maxVAL0src(x,y) thread  othersize 

  • 原理图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-i2C3jKdR-1613868899099)(阈值分割基础理论.assets/image-20210129215033755.png)]

  • 示例:

    159 ——> 255

    105 ——> 0

    205 ——> 255

    98 ——>0

2.2、反二进制阈值化

  • 分割原理:先要选定一个特定的阈值,比如:127;新的阈值产生规则为:

    大于或者等于 127 的像素点的灰度值设定为 0;

    灰度值小于 127 的像素点的灰度值设定为最大值(如 8位灰度值最大为255);

  • 公式: d s t ( x , y ) = { 0 src ⁡ ( x , y ) ≥  thread  max ⁡ V A L  othersize  d s t(x, y)=\left\{\begin{array}{cc}0 & \operatorname{src}(x, y) \geq \text { thread } \\ \max V A L & \text { othersize }\end{array}\right. dst(x,y)={0maxVALsrc(x,y) thread  othersize 

  • 原理图:在这里插入图片描述

2.3、截断阈值化

  • 分割原理:首先需要选定一个阈值,图像中大于该阈值的像素点被设定为该阈值,小于该阈值的保持不变。例如:阈值选定为 127:

    小于127的像素点保持不变;

    大于等于127的像素点设定为127

  • 公式: d s t ( x , y ) = {  threhold  src ⁡ ( x , y ) ≥  thread  src ⁡ ( x , y )  othersize  d s t(x, y)=\left\{\begin{array}{lc}\text { threhold } & \operatorname{src}(x, y) \geq \text { thread } \\ \operatorname{src}(x, y) & \text { othersize }\end{array}\right. dst(x,y)={ threhold src(x,y)src(x,y) thread  othersize 

  • 原理图:在这里插入图片描述

2.4、反阈值化为0

  • 分割原理:先选定一个阈值,然后对图像做如下操作:

    大于等于阈值的像素点变为 0;

    小于该阈值的像素点值保持不变。

  • 公式: dst ⁡ ( x , y ) = { 0 src ⁡ ( x , y ) ≥  thread  src ⁡ ( x , y )  othersize  \operatorname{dst}(x, y)=\left\{\begin{array}{cc}0 & \operatorname{src}(x, y) \geq \text { thread } \\ \operatorname{src}(x, y) & \text { othersize }\end{array}\right. dst(x,y)={0src(x,y)src(x,y) thread  othersize 

  • 原理图:在这里插入图片描述

2.5、阈值化为0

  • 分割原理:先选定一个阈值,然后对图像做如下操作:

    大于等于阈值的像素点值保持不变;

    小于该阈值的像素点值设为 0。

  • 公式: d s t ( x , y ) = { src ⁡ ( x , y ) src ⁡ ( x , y ) ≥  thread  0  othersize  d s t(x, y)=\left\{\begin{array}{cc}\operatorname{src}(x, y) & \operatorname{src}(x, y) \geq \text { thread } \\ 0 & \text { othersize }\end{array}\right. dst(x,y)={src(x,y)0src(x,y) thread  othersize 

  • 原理图:在这里插入图片描述

一维最大熵阈值分割法(Maximum Entropy Thresholding,MET)是一种图像分割方法,其理论基础是信息熵。信息熵是度量一个随机变量不确定性的指标,其定义为: $$H(X) = -\sum_{i=1}^np_i\log p_i$$ 其中,$X$ 是一个随机变量,$p_i$ 是 $X$ 取值为 $i$ 的概率。当信息熵达到最大值时,表示随机变量的不确定性最大。 在图像分割中,我们要将图像分成两个部分,即前景和背景。我们可以将图像像素的灰度值作为随机变量 $X$,其取值为 $0$ 到 $255$。我们希望通过选择一个阈值 $T$ 来将图像分成两部分,即灰度值小于 $T$ 的部分为背景,灰度值大于等于 $T$ 的部分为前景。因此,我们需要找到一个阈值 $T$,使得分割后的前景和背景的信息熵之和最大。 一维最大熵阈值分割法的具体步骤如下: 1. 统计图像灰度直方图,得到每个灰度值的像素数量。 2. 计算每个灰度值的概率 $p_i$。 3. 对于每个可能的阈值 $T$,计算分割后的前景和背景的信息熵 $H_1(T)$ 和 $H_2(T)$。 4. 计算信息熵之和 $H(T) = H_1(T) + H_2(T)$。 5. 选择使得 $H(T)$ 最大的阈值作为最终的分割阈值。 其中,分割后的前景和背景的信息熵可以通过以下公式计算: $$H_1(T) = -\sum_{i=0}^{T}p_i\log p_i$$ $$H_2(T) = -\sum_{i=T+1}^{255}p_i\log p_i$$ 一维最大熵阈值分割法是一种简单有效的图像分割方法,其基于信息熵的理论基础可以保证分割结果的最优性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SanXiMeng

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值