Pandas、numpy常用操作

Pandas

文件读写

excel

  • 读取excel: pandas.read_excel(path,sep=',',header=None),reutrn DataFrame类型
  • 写入excel: df.to_excel(path)

csv

  • 读取csv:pandas.read_excel(path)
    在这里插入图片描述在这里插入图片描述

Dataframe

索引

  • 选中df的第i列: df[i],return Series 或df.i,type: num,后者的i应遵从变量命名规则
  • 选中df的第i行: df.loc[i]
  • 选中df的第i行第j列的元素: df.loc[i,j]
  • 选中df的名为name的列df.['name'],return series

数据信息展示

  • 选取df的前5行df.head(),return Dataframe
  • 选取df的前n行df.head(n),return Dataframe
  • 计算df各列的各种常用数据数值df.describe(),return Dataframe
  • 展示df的相关信息df.info(),return NoneType,如数据类型、占用内存大小等
  • df的元素个数df.size
  • 查看df当前所有列及其类型df.columns,return pandas…index,返回列索引和类型

groupby

  • 以x列将df分组df.groupby('x'),return DataFrameGroupBy,通常经list()转换便于观察
  • 以x为列,y为行分组df.groupby(['x','y']),return DataFrameGroupBy
  • 查看gb内各索引数量gb.size(),return Series

Series

数据信息展示

  • 查看sr各元素出现的次数sr.value_counts(),return series
  • sr内元素的个数sr.size
  • 作图sr.plot()

数据类型转换

  • series类型的ndarray类型sr.values

Numpy

数组ndarray

索引

  • array[n]数组的第n行
  • array[x,y]数组的第x行,第y列的元素,等于array[x][y]
  • array[x:y,m:n]数组的第x–y索引行、m–n索引列的区域

创建

  • np.array([ [1,2,3] , [4,5,6] ]),类型:numpy.ndarray
  • np.arange(x,y,s),创建一个从x到y步长为s的数组,s缺省时为1,x缺省时为0,类型:numpy.ndarray

数据信息展示

  • 数据的维度np.shape
  • 对于二维数组,array.shape(0)为行数,array.shape(1)为列数

数据类型转换

  • 将数组ar内的数字类型进行转换ar.astype(type),对数组内每个元素的数字类型进行设定

格式变换

  • 将一个数组内的元素按x,y重新排列,缺省值-1代表根据形状调整np.reshape()np.reshape(-1,1)为矩阵的转置
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页