【数学】天 府 之 门

∣   天   府   之   门   The   Door   to   heaven. ∣ \begin{vmatrix}\Huge{\textsf{ 天 府 之 门 }}\\\texttt{The Door to heaven.}\end{vmatrix}      The Door to heaven.

A.D.Horcrux Presents. \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\footnotesize\color{grey}\text{A.D.Horcrux Presents.} A.D.Horcrux Presents.


如图,函数 y 1 = 2 x + 4 y_1=2x+4 y1=2x+4 x x x轴于 B B B,交 y y y轴于 A A A;函数 y 2 = − 2 x + 12 y_2=-2x+12 y2=2x+12 x x x轴于 C C C,交 y 1 y_1 y1 D D D。非常良心地告诉你, D ( 2 ,    8 ) . D (2,\;8). D(2,8).

JLhay8.png

目前看来很简单呢 \scriptsize\sout\textsf{目前看来很简单呢} 目前看来很简单呢

现在在BD上取点P,使得它满足: \small\color{red}\textsf{现在在BD上取点P,使得它满足:} 现在在BD上取点P,使得它满足:

{ 在CD上找一个点E,使得   PB   =   PE   时, 能在PE和BP上分别取点K和点F,使得PK=BF, 并且能够在连接BK后,在KE上找到一个点N,连接FN交BK于M, 满足 ∠ A F M = 2 ∠ K M N 且 M N = N E , \begin{cases}\small\color{blue}\textsf{在CD上找一个点E,使得 PB = PE 时,}\\{}\\\small\color{green}\textsf{能在PE和BP上分别取点K和点F,使得PK=BF,}\\\\{}\small\color{gold}\textsf{并且能够在连接BK后,在KE上找到一个点N,连接FN交BK于M,}\\\\{}\small\color{purple}\textsf{满足}\angle AFM = 2\angle KMN \textsf{且}MN = NE,\end{cases} CD上找一个点E,使得 PB = PE 时,能在PEBP上分别取点K和点F,使得PK=BF并且能够在连接BK后,在KE上找到一个点N,连接FNBKM满足AFM=2KMNMN=NE,

的这样一个性质。 \small\color{red}\textsf{的这样一个性质。} 的这样一个性质。

求P点坐标。 \Huge\textsf{求P点坐标。} P点坐标。

JLhNSP.png

原地升天 \scriptsize\sout\textsf{原地升天} 原地升天

如图什么,直接入土算了 \scriptsize\sout\textsf{如图什么,直接入土算了} 如图什么,直接入土算了


解他!

延长 M N MN MN T T T,使得 M T = P E ; MT = PE; MT=PE;

M T = P E = P B . MT = PE = PB . MT=PE=PB.

延长 B K BK BK,作 T V ⊥ M V TV \perp MV TVMV V , P Q ⊥ B K V,PQ \perp BK V,PQBK Q . Q. Q.

JLhRyT.png

1.【错位】 △ P Q B ≅ △ T V M \large\texttt{1.【错位】}\triangle PQB \cong \triangle TVM 1.【错位】PQBTVM

∵ ∠ A F M = 2 ∠ K M N , ∠ F M B = ∠ K M N , \because \angle AFM = 2\angle KMN ,\angle FMB = \angle KMN , AFM=2KMN,FMB=KMN,

∴ ∠ F B M = ∠ A F M − ∠ F M B = 2 ∠ F M B − ∠ F M B = ∠ F M B , \therefore \angle FBM = \angle AFM - \angle FMB = 2\angle FMB - \angle FMB = \angle FMB, FBM=AFMFMB=2FMBFMB=FMB,(外角定理)

∴ F B = F M . \therefore FB = FM . FB=FM.(A)

△ P Q B \triangle PQB PQB △ T V Q \triangle TVQ TVQ 中,

{ ∠ P B Q = ∠ T M V , ∠ B Q P = ∠ M V T = 90 ° , P B = T M , \begin{cases}\angle PBQ = \angle TMV ,\\\angle BQP = \angle MVT = 90\degree ,\\PB = TM,\end{cases} PBQ=TMV,BQP=MVT=90°,PB=TM,

∴ △ P Q B ≅ △ T V Q    ( A A S ) . \therefore \triangle PQB \cong \triangle TVQ\;(AAS). PQBTVQ(AAS).


连接 P T PT PT V Q VQ VQ R . R. R.

JLh4w4.png

2.【倍长型】 △ P Q R ≅ △ T V R \large\texttt{2.【倍长型】}\triangle PQR \cong \triangle TVR 2.【倍长型】PQRTVR

∵ △ P Q B ≅ △ T V Q \because \triangle PQB \cong \triangle TVQ PQBTVQ

∴ P Q = T V . \therefore PQ = TV . PQ=TV.

△ P Q R \triangle PQR PQR △ T V R \triangle TVR TVR 中,

{ ∠ P R Q = ∠ T R V , ∠ R Q P = ∠ R V T = 90 ° , P Q = T V , \begin{cases}\angle PRQ = \angle TRV ,\\\angle RQP = \angle RVT = 90\degree ,\\PQ = TV,\end{cases} PRQ=TRV,RQP=RVT=90°,PQ=TV,

∴ △ P Q R ≅ △ T V R    ( A A S ) . \therefore \triangle PQR \cong \triangle TVR\;(AAS). PQRTVR(AAS).


F L ⊥ B M FL \perp BM FLBM L , R Z ∥ F M L,RZ \parallel FM L,RZFM P Q PQ PQ Z . Z. Z.

JLh5TJ.png

3.【平行型】 △ F M L ≅ △ Z R Q \large\texttt{3.【平行型】}\triangle FML \cong \triangle ZRQ 3.【平行型】FMLZRQ

∵ F M = F B \because FM = FB FM=FB(见A)

F L ⊥ B M , FL \perp BM , FLBM,

∴ B L = M L = 1 2 B M . \therefore BL = ML =\dfrac{1}{2} BM. BL=ML=21BM.

∵ △ P Q R ≅ △ T V R \because \triangle PQR \cong \triangle TVR PQRTVR

∴ Q R = V R = 1 2 V Q . \therefore QR = VR = \dfrac{1}{2} VQ . QR=VR=21VQ.

∵ △ P Q B ≅ △ T V Q \because \triangle PQB \cong \triangle TVQ PQBTVQ

∴ B Q = V M . \therefore BQ = VM . BQ=VM.

∴ B Q − M Q = V M − Q M , \therefore BQ - MQ = VM - QM , BQMQ=VMQM,

B M = V Q , BM = VQ , BM=VQ,

1 2 B M = 1 2 V Q , \dfrac{1}{2}BM = \dfrac{1}{2}VQ , 21BM=21VQ,

∴ L M = Q R . \therefore LM =QR . LM=QR.

∵ Z R ∥ F M \because ZR \parallel FM ZRFM

∴ ∠ F M L = ∠ Z R M . \therefore \angle FML = \angle ZRM. FML=ZRM.(同位角相等)

△ F M L \triangle FML FML △ Z R Q \triangle ZRQ ZRQ 中,

{ ∠ F L M = ∠ Z Q R = 90 ° , L M = Q R , ∠ F M L = ∠ Z R Q , \begin{cases}\angle FLM = \angle ZQR = 90\degree, \\LM = QR ,\\\angle FML = \angle ZRQ,\end{cases} FLM=ZQR=90°,LM=QR,FML=ZRQ,

∴ △ F M L ≅ △ Z R Q    ( A S A ) . \therefore \triangle FML \cong \triangle ZRQ\;(ASA). FMLZRQ(ASA).


JLhTYR.png

4.【翻折型】 △ P Z R ≅ △ R K P \large\texttt{4.【翻折型】}\triangle PZR \cong \triangle RKP 4.【翻折型】PZRRKP

∵ △ F M L ≅ △ Z R Q , \because \triangle FML \cong \triangle ZRQ, FMLZRQ,

∴ F M = Z R , \therefore FM = ZR , FM=ZR,

∵ F M = F B = P K \because FM = FB = PK FM=FB=PK

∴ Z R = P K . \therefore ZR = PK. ZR=PK.

∵ Z R ∥ F M \because ZR \parallel FM ZRFM

∴ ∠ P R Z = ∠ P T N . \therefore \angle PRZ = \angle PTN . PRZ=PTN.

∵ M T = E P , M N = N E , \because MT = EP ,MN = NE, MT=EP,MN=NE,(不记得了?回开头看看!)

∴ M T − M N = E P − E N , \therefore MT - MN = EP - EN , MTMN=EPEN,

N P = N T , NP = NT , NP=NT,

∴ ∠ P T N = ∠ R P K . \therefore \angle PTN = \angle RPK . PTN=RPK.

∴ ∠ P R Z = ∠ R P K . \therefore \angle PRZ = \angle RPK . PRZ=RPK.

△ P R Z \triangle PRZ PRZ △ R P K \triangle RPK RPK 中,

{ P R = R P , ∠ P R Z = ∠ R P K , R Z = P K , \begin{cases}PR = RP, \\\angle PRZ = \angle RPK,\\RZ = PK ,\end{cases} PR=RP,PRZ=RPK,RZ=PK,

∴ △ P R Z ≅ △ R P K    ( S A S ) . \therefore \triangle PRZ \cong \triangle RPK\;(SAS). PRZRPK(SAS).


JLh7f1.png

5.激动人心的直角! \large\texttt{5.激动人心的直角!} 5.激动人心的直角!

∵ △ P R Z ≅ △ R P K \because \triangle PRZ \cong \triangle RPK PRZRPK

∴ ∠ Z P R = ∠ K R P . \therefore \angle ZPR = \angle KRP . ZPR=KRP.

∴ ∠ Z P R − ∠ R P K = ∠ K R P − ∠ Z R P , \therefore \angle ZPR - \angle RPK = \angle KRP - \angle ZRP , ZPRRPK=KRPZRP,

∠ Q P K = ∠ Q R Z . \angle QPK = \angle QRZ . QPK=QRZ.

∴ ∠ B P E = ∠ B P M + ∠ Q P K \therefore \angle BPE = \angle BPM + \angle QPK BPE=BPM+QPK

= ∠ V T M + ∠ Q R Z = \angle VTM + \angle QRZ =VTM+QRZ

= ∠ V T M + ∠ R M T = \angle VTM + \angle RMT =VTM+RMT(内错角相等)

∠ M V T = 90 ° ! \angle MVT = 90\degree ! MVT=90°!

∴ ∠ B P E = 90 ° ! ! ! \therefore \angle BPE = 90\degree !!! BPE=90°!!!


我们距离成功只有一步之遥!

JLhbSx.png

6.【三垂直法】 \large\texttt{6.【三垂直法】} 6.【三垂直法】

作出三垂直: △ B S P ≅ △ P W E . \triangle BSP \cong \triangle PWE . BSPPWE.

P ( x , 2 x + 4 ) P(x,2x+4) P(x,2x+4)

S P = x + 2 , B S = 2 x + 4. SP = x+2 ,BS = 2x+4. SP=x+2,BS=2x+4.

易得 E ( 3 x + 4 , x + 2 ) . E(3x+4,x+2). E(3x+4,x+2).

E E E又在 y 2 y_2 y2上,

∴ − 2 ∗ ( 2 x + 4 ) + 12 = x + 2 , \therefore -2*(2x+4)+12 = x+2, 2(2x+4)+12=x+2,

解得 x = 2 7 . x=\dfrac{2}{7}. x=72.

∴ P ( 2 7 , 32 7 ) ! ! ! ! \Huge\therefore P(\dfrac{2}{7} , \dfrac{32}{7})!!!! P(72,732)!!!!

考点:

一次函数,一个全靠灵感的错位全等,倍长型全等,平行型全等,翻折型全等,平行线的性质,三线合一,三垂直,

一次函数的顶尖考法!


——A.D.Horcrux presents. \textrm{——A.D.Horcrux presents.} ——A.D.Horcrux presents.

转载请注明出处!

文章如果有问题请及时联系我!发送至邮箱1058702787@qq.com 。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值