🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。
极限概念是在探求某些实际问题的精确解答过程中产生的,在解决实际问题中逐渐形成的这种极限方法, 已成为高等数学中的一种基本方法.
数列
- 定义
按自然数1,2,3,… 编号依次排列的一列”有头无尾“的数
x 1 , x 2 , x 3 , . . . , x n , . . . \begin{align} x_{1},x_{2},x_{3},...,x_{n},...\nonumber \end{align} x1,x2,x3,...,xn,...
称为无穷数列(简称数列),记为 { x n } \{x_{n}\} {xn},其中 { x n } \{x_{n}\} {xn}称为数列的第 n n n项或通项.
- 例子
- 1 2 , 1 2 2 , 1 2 3 , . . . , 1 2 n , . . . \large\frac{1}{2},\frac{1}{2^{2}},\frac{1}{2^{3}},...,\frac{1}{2^{n}},... 21,221,231,...,2n1,... 通项为 1 2 n \frac{1}{2^{n}} 2n1;
- 2 , 1 2 , 4 3 , . . . , 1 + ( − 1 ) n + 1 n , . . . 2,\frac{1}{2},\frac{4}{3},...,1+\frac{(-1)^{n+1}}{n},... 2,21,34,...,1+n(−1)n+1,... 通项为 1 + ( − 1 ) n + 1 n 1+\frac{(-1)^{n+1}}{n} 1+n(−1)n+1;
- 2 , 4 , 8 , 16 , . . . , 2 n , . . . 2,4,8,16,...,2^{n},... 2,4,8,16,...,2n,... 通项为 2 n 2^{n} 2n;
数列的极限概念
- 描述性定义
已知数列 { x n } \{x_{n}\} {xn},如果随着 n n n 的无限增大,数列项 { x n } \{x_{n}\} {xn} 在其变化过程中与某一常数 a a a无限接近,则称 a a a 是数列 { x n } \{x_{n}\} {xn} 的极限,或者称数列 { x n } \{x_{n}\} {xn} 收敛于 a a a,记为
lim n → ∞ x n = a 或 x n ⟶ a ( n → ∞ ) \begin{align} \lim_{n \rightarrow \infty}~ x_{n}=a~~~~~~或 ~~~~~~~~x_{n} \longrightarrow a(n \rightarrow \infty)\nonumber \end{align} n→∞lim xn=a 或 xn⟶a(n→∞)
如果数列没有极限,就说数列 { x n } \{x_{n}\} {xn} 是发散的.
注:
发散有三种:极限为①不存在;②-
∞
\infty
∞; ③+
∞
\infty
∞.
- ε − N \varepsilon-N ε−N 定义
给定数列 { x n } \{x_{n}\} {xn},如果存在常数 a a a,对于任意给定的的正数 ε \varepsilon ε (无论它多么小),总存在正整数 N N N, 使得当 n > N n>N n>N时,不等式 ∣ x n − a ∣ < ε |x_{n}-a|<\varepsilon ∣xn−a∣<ε 都成立,那么就称常数 a a a 是数列 { x n } \{x_{n}\} {xn}的极限,或者称数列 { x n } \{x_{n}\} {xn} 收敛于 a a a,记为
lim n → ∞ x n = a 或 x n ⟶ a ( n → ∞ ) \begin{align} \lim_{n \rightarrow \infty}~ x_{n}=a~~~~~~或 ~~~~~~~~x_{n} \longrightarrow a(n \rightarrow \infty)\nonumber \end{align} n→∞lim xn=a 或 xn⟶a(n→∞)
注:
① 定义中
ε
\varepsilon
ε 具有任意性.
~~~~~~~
② 定义中的正整数
N
N
N 与任意给定的正数
ε
\varepsilon
ε 有关.
~~~~~~~
③
∞
\infty
∞ 不是一个确定的数,而是一个记号,表示绝对值无限增大的一个变量.
- 例子
例:利用定义证明 lim n → ∞ 1 2 n = 0 \large \lim_{n \rightarrow \infty} \Large\frac{1}{2^{n}}=0 limn→∞2n1=0.
证:由于 ∣ 1 2 n − 0 ∣ = 1 2 n |\frac{1}{2^{n}}-0|=\frac{1}{2^{n}} ∣2n1−0∣=2n1 ,要使 ∣ 1 2 n − 0 ∣ = 1 2 n < ε |\frac{1}{2^{n}}-0|=\frac{1}{2^{n}}<\varepsilon ∣2n1−0∣=2n1<ε,只要 n > log 2 1 ε n>\log_{2}\Large\frac{1}{\varepsilon} n>log2ε1. 于是对 ∀ ε > 0 \forall \varepsilon>0 ∀ε>0,取
N > [ log 2 1 ε ] N>\Large[\log_{2}\frac{1}{\varepsilon}] N>[log2ε1], 则当 n > N n>N n>N 时, ∣ 1 2 n − 0 ∣ < ε |\frac{1}{2^{n}}-0|<\varepsilon ∣2n1−0∣<ε 恒成立, 故 lim n → ∞ 1 2 n = 0 \large \lim_{n \rightarrow \infty} \Large\frac{1}{2^{n}}=0 limn→∞2n1=0.
数列的极限性质
- 数列极限的唯一性
若数列 { x n } \{x_{n}\} {xn} 收敛, 则 { x n } \{x_{n}\} {xn} 的极限是唯一的.
- 数列极限的有界性
若数列 { x n } \{x_{n}\} {xn} 收敛, 则 { x n } \{x_{n}\} {xn} 必有界.
- 数列极限的保号性
若 lim n → ∞ x n = A \lim_{n \rightarrow \infty}x_{n}=A limn→∞xn=A , 且 A > 0 A>0 A>0 (或 A < 0 A<0 A<0), 则存在正整数 N N N, 使得当 n > N n>N n>N 时,都有 x n > 0 x_{n}>0 xn>0 (或 x n < 0 x_{n}<0 xn<0).