1.8 函数的连续性与间断点(一)

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。


函数的连续性是高等数学中函数的 重要概念之一,在自然界中也有很多现象都具有连续性,比如气温在一天中的变化、生物在一个时间段内的成长等,把这些现象反映在数学中,它们的共同点就是当自变量发生微小变化时,函数也发生微小的变化,这就是 连续.


函数的连续性

  1. 增量

定义1:设变量 x x x 从它的一个初值 x 1 x_{1} x1 变到终值 x 2 x_{2} x2 ,终值与初值的差为 x 2 − x 1 x_{2}-x_{1} x2x1 , 那么这个差就叫做变量 x x x增量(也叫改变量),记为 △ x \bigtriangleup x x,即 △ x = x 2 − x 1 \bigtriangleup x=x_{2}-x_{1} x=x2x1.

设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某邻域内有定义,且 x 0 x_{0} x0 x 0 + △ x x_{0}+\bigtriangleup x x0+x 都在邻域范围内,当变量 x x x x 0 x_{0} x0 变到 x 0 + △ x x_{0}+\bigtriangleup x x0+x 时,函数值 f ( x ) f(x) f(x) 相应地从 f ( x 0 ) f(x_{0}) f(x0) 变到 f ( x 0 + △ x ) f(x_{0}+\bigtriangleup x) f(x0+x),记函数的增量(即改变量)为 △ y \bigtriangleup y y ,则 △ y = f ( x 0 + △ x ) − f ( x 0 ) \bigtriangleup y=f(x_{0}+\bigtriangleup x)-f(x_{0}) y=f(x0+x)f(x0).

注:增量的符号可正可负.

  1. 函数在一点处连续性

定义2:设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某邻域 U ( x 0 ) U(x_{0}) U(x0) 内有定义,给自变量 x x x 一个改变量 △ x \bigtriangleup x x,有 x 0 + △ x ∈ U ( x 0 ) x_{0}+\bigtriangleup x\in U(x_{0}) x0+xU(x0) ,则对应的函数的改变量为 △ y = f ( x 0 + △ x ) − f ( x 0 ) \bigtriangleup y=f(x_{0}+\bigtriangleup x)-f(x_{0}) y=f(x0+x)f(x0),如果
lim ⁡ △ x → 0 △ y = lim ⁡ △ x → 0 [ f ( x 0 + △ x ) − f ( x 0 ) ] = 0 , \begin{align} \lim_{\bigtriangleup x\rightarrow 0}\bigtriangleup y=\lim_{\bigtriangleup x\rightarrow 0}[f(x_{0}+\bigtriangleup x)-f(x_{0})]=0,\nonumber \end{align} x0limy=x0lim[f(x0+x)f(x0)]=0,
则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0连续.

对于定义2,如果记 x = x 0 + △ x x=x_{0}+\bigtriangleup x x=x0+x,则当 △ x → 0 \bigtriangleup x\rightarrow 0 x0 时, x → x 0 x\rightarrow x_{0} xx0, 因此
△ y = f ( x 0 + △ x ) − f ( x 0 ) = f ( x ) − f ( x 0 ) , \begin{align} \bigtriangleup y=f(x_{0}+\bigtriangleup x)-f(x_{0})=f(x)-f(x_{0}),\nonumber \end{align} y=f(x0+x)f(x0)=f(x)f(x0),
所以
lim ⁡ △ x → 0 △ y = lim ⁡ x → x 0 [ f ( x ) − f ( x 0 ) ] = lim ⁡ x → x 0 f ( x ) − lim ⁡ x → x 0 f ( x 0 ) = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) = 0 , \begin{align} \lim_{\bigtriangleup x\rightarrow 0}\bigtriangleup y=\lim_{x\rightarrow x_{0}}[f(x)-f(x_{0})]=\lim_{x\rightarrow x_{0}}f(x)-\lim_{x\rightarrow x_{0}}f(x_{0})=\lim_{x\rightarrow x_{0}}f(x)-f(x_{0})=0,\nonumber \end{align} x0limy=xx0lim[f(x)f(x0)]=xx0limf(x)xx0limf(x0)=xx0limf(x)f(x0)=0,

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) . \begin{align} \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}).\nonumber \end{align} xx0limf(x)=f(x0).
因此函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处连续的定义可改写为(常用连续定义):

设函数 y = f ( x ) y=f(x) y=f(x) x 0 x_{0} x0 的某邻域 U ( x 0 ) U(x_{0}) U(x0) 内有定义,如果
lim ⁡ x → x 0 f ( x ) = f ( x 0 ) , \begin{align} \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}),\nonumber \end{align} xx0limf(x)=f(x0),

则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0连续.

  1. 函数连续性的几个结论
  • 函数在点 x 0 x_{0} x0 处连续的要求是:① f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 的某邻域内有定义,② lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_{0}}f(x) limxx0f(x) 存在,③ lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}) limxx0f(x)=f(x0). 必须同时满足这三个条件,才能说明函数在点 x 0 x_{0} x0 处连续. 若其中任何一个条件不满足,则函数在点 x 0 x_{0} x0 处就部连续. 而且,由定义可知,函数在某点连续是函数在该点的局部性质.
  • lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}) limxx0f(x)=f(x0) lim ⁡ x → x 0 x = x 0 \lim_{x\rightarrow x_{0}}x=x_{0} limxx0x=x0 可知, lim ⁡ x → x 0 f ( x ) = f ( lim ⁡ x → x 0 x ) \lim_{x\rightarrow x_{0}}f(x)=f(\lim_{x\rightarrow x_{0}}x) limxx0f(x)=f(limxx0x),说明连续函数的函数符号与极限符号可以交换次序.
  • lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim_{x\rightarrow x_{0}}f(x)=f(x_{0}) limxx0f(x)=f(x0) 表明函数在该点的极限值等于该点的函数值,也就是说,如果已知函数在某一点 x 0 x_{0} x0 处连续,且求函数在 x 0 x_{0} x0 处的极限值,则直接将 x 0 x_{0} x0 替代函数中的 x x x 即可得到结果.
  1. 函数左连续和右连续

定义3:设 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的左邻域内有定义,若 lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim_{x\rightarrow x^{-}_{0}}f(x)=f(x_{0}) limxx0f(x)=f(x0) ,则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0左连续
y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的右邻域内有定义,若 lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim_{x\rightarrow x^{+}_{0}}f(x)=f(x_{0}) limxx0+f(x)=f(x0) ,则称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0右连续

  1. 函数在一点处连续的充要条件

定理1:函数 y = f ( x ) y=f(x) y=f(x) 在 点 x 0 x_{0} x0 处连续的充分必要条件是: f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 处既左连续,又右连续, 即 lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim_{x\rightarrow x^{-}_{0}}f(x)=\lim_{x\rightarrow x^{+}_{0}}f(x)=f(x_{0}) limxx0f(x)=limxx0+f(x)=f(x0).

注:此定理通常用于判断分段函数在分段点处的连续性.


连续函数的运算法则

  1. 连续函数的运算法则

定理2:若函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 均在点 x 0 x_{0} x0 处连续,则它们的和(差) f ( x ) ± g ( x ) f(x)\pm g(x) f(x)±g(x)、积 f ( x ) ⋅ g ( x ) f(x)\cdot g(x) f(x)g(x) 及商 f ( x ) g ( x ) \Large \frac{f(x)}{ g(x)} g(x)f(x) (要求 g ( x 0 ) ≠ 0 ) g(x_{0})\neq 0) g(x0)=0) 都在点 x 0 x_{0} x0 处连续.

  1. 反函数的连续性

定理3(反函数的连续性): 若函数 y = f ( x ) y=f(x) y=f(x) 在区间 I x I_{x} Ix 上严格单调连续,则它的反函数 x = f − 1 ( y ) x=f^{-1}(y) x=f1(y) 也在对应的区间 I y = { y   ∣   y = f ( x ) , x ∈ I x } I_{y}=\{y ~|~ y=f(x), x\in I_{x} \} Iy={y  y=f(x),xIx} 上严格单调连续.

注:定理3可简述为:单调连续函数存在单调连续的反函数.

  1. 复合函数的连续性

定理4(复合函数的连续性):设 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 与函数 y = f ( u ) y=f(u) y=f(u) 复合而成的,若 lim ⁡ x → x 0 g ( x ) = u 0 \lim_{x\rightarrow x_{0}}g(x)=u_{0} limxx0g(x)=u0, lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim_{u\rightarrow u_{0}}f(u)=f(u_{0}) limuu0f(u)=f(u0), 则
lim ⁡ x → x 0 f [ g ( x ) ] = lim ⁡ u → u 0 f ( u ) = f ( u 0 ) . \begin{align} \lim_{x\rightarrow x_{0}}f[g(x)]=\lim_{u\rightarrow u_{0}}f(u)=f(u_{0}).\nonumber \end{align} xx0limf[g(x)]=uu0limf(u)=f(u0).

在定理4中,若函数 u = g ( x ) u=g(x) u=g(x) 在点 x 0 x_{0} x0 处连续,即 lim ⁡ x → x 0 g ( x ) = g ( x 0 ) \lim_{x\rightarrow x_{0}}g(x)=g(x_{0}) limxx0g(x)=g(x0),则有 u 0 = g ( x 0 ) u_{0}=g(x_{0}) u0=g(x0), 从而可得到以下定理:

定理5:设 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 是由函数 u = g ( x ) u=g(x) u=g(x) 与函数 y = f ( u ) y=f(u) y=f(u) 复合而成的,若 lim ⁡ x → x 0 g ( x ) = g ( x 0 ) = u 0 \lim_{x\rightarrow x_{0}}g(x)=g(x_{0})=u_{0} limxx0g(x)=g(x0)=u0, lim ⁡ u → u 0 f ( u ) = f ( u 0 ) \lim_{u\rightarrow u_{0}}f(u)=f(u_{0}) limuu0f(u)=f(u0), 则
lim ⁡ x → x 0 f [ g ( x ) ] = f ( u 0 ) = f [ g ( x 0 ) ] . \begin{align} \lim_{x\rightarrow x_{0}}f[g(x)]=f(u_{0})=f[g(x_{0})].\nonumber \end{align} xx0limf[g(x)]=f(u0)=f[g(x0)].

注: ① 结论 lim ⁡ x → x 0 f [ g ( x ) ] = f [ g ( x 0 ) ] \lim_{x\rightarrow x_{0}}f[g(x)]=f[g(x_{0})] limxx0f[g(x)]=f[g(x0)] 说明复合函数 y = f [ g ( x ) ] y=f[g(x)] y=f[g(x)] 在点 x 0 x_{0} x0 处是连续的. 由定理5可知,连续函数的复合函数仍然是连续函数.
         ~~~~~~~~          ② 由 lim ⁡ x → x 0 f [ g ( x ) ] = f ( u 0 ) = f [ lim ⁡ x → x 0 g ( x ) ] = f [ g ( x 0 ) ] = f [ g ( lim ⁡ x → x 0 x ) ] \lim_{x\rightarrow x_{0}}f[g(x)]=f(u_{0})=f[\lim_{x\rightarrow x_{0}}g(x)]=f[g(x_{0})]=f[g(\lim_{x\rightarrow x_{0}}x)] limxx0f[g(x)]=f(u0)=f[limxx0g(x)]=f[g(x0)]=f[g(limxx0x)] 知,连续函数的符号和极限函数的符号可以交换次序. 这在求解极限时是非常有用的.

  1. 初等函数的连续性

结论1基本初等函数在其定义域内都是连续的.

结论2:由初等函数的定义、基本初等函数的连续性、定理2和定理5可得:一切初等函数在其定义区间内都是连续的. 所谓定义区间是指包含在定义域内的区间.


  • 26
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 28
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值