1.8 函数的连续性与间断点(二)

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

函数的间断点

  1. 定义

如果函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处不连续,则称 x 0 x_{0} x0 是函数 y = f ( x ) y=f(x) y=f(x)间断点.

  1. 函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 处不连续的情况

设函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_{0} x0 的某去心邻域内有定义,如果函数 y = f ( x ) y=f(x) y=f(x) 有下列三种情况之一:

  • f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 处无定义;
  • f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 处有定义,但极限 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_{0}}f(x) limxx0f(x) 不存在;
  • f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 处有定义,且极限 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_{0}}f(x) limxx0f(x) 也存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim_{x\rightarrow x_{0}}f(x)\neq f(x_{0}) limxx0f(x)=f(x0).
    则称函数 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0不连续,也称点 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x)间断点.

间断点的分类

根据上述间断点的几种情形,可将间断点分成两大类:第一类间断点第二类间断点.

x 0 x_{0} x0 为函数 f ( x ) f(x) f(x) 的间断点:

  1. 第一类间断点

若当 x → x 0 x\rightarrow x_{0} xx0 时,左极限 lim ⁡ x → x 0 − f ( x ) \lim_{x\rightarrow x^{-}_{0}}f(x) limxx0f(x) 和 右极限 lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x^{+}_{0}}f(x) limxx0+f(x) 均存在,则称 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x) 的第一类间断点;又根据左、右极限是否相等可将第一类间断点分为可去型间断点跳跃型间断点.

(1)可去型间断点

如果左、右极限都存在并且相等,即 lim ⁡ x → x 0 − f ( x ) \lim_{x\rightarrow x^{-}_{0}}f(x) limxx0f(x) = lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x^{+}_{0}}f(x) limxx0+f(x),则 lim ⁡ x → x 0 f ( x ) \lim_{x\rightarrow x_{0}}f(x) limxx0f(x) 存在,称 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x)可去型间断点.

(2)跳跃型间断点

如果左、右极限都存在但不相等,即 lim ⁡ x → x 0 − f ( x ) ≠ \lim_{x\rightarrow x^{-}_{0}}f(x)\neq limxx0f(x)= lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x^{+}_{0}}f(x) limxx0+f(x),则称 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x)跳跃型间断点.

  1. 第二类间断点

若当 x → x 0 x\rightarrow x_{0} xx0 时,左极限 lim ⁡ x → x 0 − f ( x ) \lim_{x\rightarrow x^{-}_{0}}f(x) limxx0f(x) 和 右极限 lim ⁡ x → x 0 + f ( x ) \lim_{x\rightarrow x^{+}_{0}}f(x) limxx0+f(x) 至少有一个不存在,则称 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x) 的第二类间断点;又根据极限不存在的方式可将第二类间断点分为无穷型间断点振荡型间断点.

(1)无穷型间断点

如果 lim ⁡ x → x 0 f ( x ) = ∞ \lim_{x\rightarrow x_{0}}f(x)=\infty limxx0f(x)=,则称 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x)无穷型间断点.

(2)振荡型间断点

如果左、右极限振荡不存在的间断点,则称 x 0 x_{0} x0 为函数 f ( x ) f(x) f(x)振荡型间断点. 其中振荡是不可以解出的答案,极限完全不存在.


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值