1.9 闭区间上连续函数的性质

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。


在闭区间连续函数有几个重要的性质,现以定理的形式叙述它们.

最大值最小值定理

  1. 定义

y = f ( x ) y=f(x) y=f(x) 是定义在区间 I I I 上的函数, 如果有 x 0 ∈ I x_{0}\in I x0I, 对于任一 x ∈ I x\in I xI,都有
f ( x ) ≤ f ( x 0 ) f(x)\leq f(x_{0}) f(x)f(x0), 则称 f ( x 0 ) f(x_{0}) f(x0) 是函数 f ( x ) f(x) f(x) 在区间 I I I 上的最大值 x 0 x_{0} x0最大值点;如果有 f ( x ) ≥ f ( x 0 ) f(x)\geq f(x_{0}) f(x)f(x0),则称 f ( x 0 ) f(x_{0}) f(x0) 是函数 f ( x ) f(x) f(x) 在区间 I I I 上的最小值 x 0 x_{0} x0最小值点.

  1. 最大值最小值定理

定理:若函数 y = f ( x ) y=f(x) y=f(x)闭区间 [ a , b ] [a,b] [a,b]连续,则函数 f ( x ) f(x) f(x) 在该区间上一定取得最大值和最小值, 即存在 ξ 1 \xi_{1} ξ1, ξ 2 ∈ [ a , b ] \xi_{2}\in [a,b] ξ2[a,b] , 使得对于任一 x ∈ [ a , b ] x\in [a,b] x[a,b],都有 f ( ξ 1 ) ≤ f ( x ) ≤ f ( ξ 2 ) f(\xi_{1})\leq f(x)\leq f(\xi_{2}) f(ξ1)f(x)f(ξ2).


有界性定理

定理:若函数 y = f ( x ) y=f(x) y=f(x)闭区间 [ a , b ] [a,b] [a,b]连续,则函数 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上**有界**.


零点定理

定理:若函数 y = f ( x ) y=f(x) y=f(x)闭区间 [ a , b ] [a,b] [a,b]连续,且 f ( a ) ⋅ f ( b ) < 0 f(a)\cdot f(b)<0 f(a)f(b)<0, 则在开区间 ( a , b ) (a,b) (a,b) 内至少存在一点 ξ \xi ξ,使得 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0.


介质定理

定理:若函数 y = f ( x ) y=f(x) y=f(x)闭区间 [ a , b ] [a,b] [a,b]连续 f ( a ) = A f(a)=A f(a)=A f ( b ) = B f(b)=B f(b)=B,且 A ≠ B A\neq B A=B, 则对介于 A A A B B B 之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b) 内至少存在一点 ξ \xi ξ,使得 f ( ξ ) = C f(\xi)=C f(ξ)=C.

推论:若函数 y = f ( x ) y=f(x) y=f(x)闭区间 [ a , b ] [a,b] [a,b]连续,则函数必取得介于最大值与最小值之间的所有值.


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值