7.5 空间直线及其方程

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。

空间直线的一般方程

空间直线 L {L} L可以看成空间两平面的 I I 1 {II_{1}} II1 I I 2 {II_{2}} II2的交线,设两平面方程为

I I 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 , {II_{1}}:A_{1}x+B_{1}y+C_{1}z+D_{1}=0, II1:A1x+B1y+C1z+D1=0,
I I 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 , {II_{2}}:A_{2}x+B_{2}y+C_{2}z+D_{2}=0, II2:A2x+B2y+C2z+D2=0,

因此,方程组
{ A 1 x + B 1 y + C 1 z + D 1 = 0 , A 2 x + B 2 y + C 2 z + D 2 = 0 , \begin{align} \left\{ \begin{aligned} A_{1}x+B_{1}y+C_{1}z+D_{1}=0 , \\ A_{2}x+B_{2}y+C_{2}z+D_{2}=0,\\ \end{aligned} \right. \end{align} {A1x+B1y+C1z+D1=0,A2x+B2y+C2z+D2=0,
称为空间直线的一般方程.


空间直线的对称式方程

  1. 方向向量

如果一非零向量平行于一条已知直线,则该向量称为这条直线的方向向量.

  1. 直线的对称式方程
    M ( x , y , z ) M(x,y,z) M(x,y,z)是直线上任意一点,
    x − x 0 m = y − y 0 n = z − z 0 p . \begin{align} \frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p}. \end{align} mxx0=nyy0=pzz0.
    称作直线的对称式方程. 其中 s → = { m , n , p } \overrightarrow{s}=\{m,n,p\} s ={m,n,p}是直线的方向向量, M 0 ( x 0 , y 0 , z 0 ) M_{0}(x_{0},y_{0},z_{0}) M0(x0,y0,z0)是直线上已知一点.

  2. 方向余弦
    直线的任一方向向量 s → \overrightarrow{s} s 的坐标 m , n , p m,n,p m,n,p(不能同时为零)叫做直线的一组方向数,而方向向量的方向余弦称为直线的方向余弦.


空间直线的参数方程

由直线的对称式方程容易导出直线的参数方程.令 x − x 0 m = y − y 0 n = z − z 0 p = t \Large\frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p}=t mxx0=nyy0=pzz0=t, 则
{ x = x 0 + m t , y = y 0 + n t , z = z 0 + p t . \begin{align} \left\{ \begin{aligned} x&=x_{0}+mt , \\ y&=y_{0}+nt,\\ z&=z_{0}+pt. \end{aligned} \right. \end{align} xyz=x0+mt,=y0+nt,=z0+pt.
方程组 (3) 叫做直线的参数方程.


直线与直线的位置关系

  1. 定义

两直线的方向向量的夹角(通常指锐角或直角)称为两直线的夹角.

  1. 两直线的夹角

设两直线的方程分别为

L 1 : x − x 1 m 1 = y − y 1 n 1 = z − z 1 p 1 L_{1}:\Large\frac{x-x_{1}}{m_{1}}=\frac{y-y_{1}}{n_{1}}=\frac{z-z_{1}}{p_{1}} L1:m1xx1=n1yy1=p1zz1
L 2 : x − x 2 m 2 = y − y 2 n 2 = z − z 2 p 2 L_{2}:\Large\frac{x-x_{2}}{m_{2}}=\frac{y-y_{2}}{n_{2}}=\frac{z-z_{2}}{p_{2}} L2:m2xx2=n2yy2=p2zz2.

则直线 L 1 L_{1} L1和直线 L 2 L_{2} L2的夹角 φ \varphi φ
c o s φ = ∣ m 1 m 2 + n 1 n 2 + p 1 p 2 ∣ m 1 2 + n 1 2 + p 1 2 m 2 2 + n 2 2 + p 2 2 \begin{align} cos\varphi=\frac{|m_{1}m_{2}+n_{1}n_{2}+p_{1}p_{2}|}{\sqrt{m_{1}^{2}+n_{1}^{2}+p_{1}^{2}}\sqrt{m_{2}^{2}+n_{2}^{2}+p_{2}^{2}}} \end{align} cosφ=m12+n12+p12 m22+n22+p22 m1m2+n1n2+p1p2

(4)称为两直线的夹角余弦公式.
3. 两直线的位置关系

L 1 ⊥ L 2 L_{1}\bot L_{2} L1L2 ⟺ \Longleftrightarrow s → 1 ⊥ s → 2 \overrightarrow{s}_{1}\bot\overrightarrow{s}_{2} s 1s 2 ⟺ \Longleftrightarrow m 1 m 2 + n 1 n 2 + p 1 p 2 = 0 m_{1}m_{2}+n_{1}n_{2}+p_{1}p_{2}=0 m1m2+n1n2+p1p2=0

L 1 ∥ L 2 L_{1}\parallel L_{2} L1L2 ⟺ \Longleftrightarrow s → 1 ∥ s → 2 \overrightarrow{s}_{1}\parallel\overrightarrow{s}_{2} s 1s 2 ⟺ \Longleftrightarrow m 1 m 2 + n 1 n 2 + p 1 p 2 \large\frac{m_{1}}{m_{2}}+\frac{n_{1}}{n_{2}}+\frac{p_{1}}{p_{2}} m2m1+n2n1+p2p1


直线与平面的位置关系

  1. 定义

直线与其在平面上的投影直线的夹角 φ \varphi φ 称为直线与平面的夹角 ( 0 ≤ φ ≤ π 2 ) (0\leq \varphi \leq \frac{\pi}{2}) (0φ2π)

  1. 两平面的夹角

设直线与平面的方程分别为

L : x − x 0 m = y − y 0 n = z − z 0 p L:\Large\frac{x-x_{0}}{m}=\frac{y-y_{0}}{n}=\frac{z-z_{0}}{p} L:mxx0=nyy0=pzz0 s → = { m , n , p } \overrightarrow{s}=\{m,n,p\} s ={m,n,p}
Π : A x + B y + C z + D = 0 Π:Ax+By+Cz+D=0 ΠAx+By+Cz+D=0 n → \overrightarrow{n} n = { A , B , C } \{A,B,C\} {A,B,C}

则直线 L L L与平面 Π Π Π夹角 φ \varphi φ
s i n φ = ∣ A m + B n + C p ∣ A 2 + B 2 + C 2 m 2 + n 2 + p 2 \begin{align} sin\varphi=\frac{|Am+Bn+Cp|}{\sqrt{A^{2}+B^{2}+C^{2}}\sqrt{m^{2}+n^{2}+p^{2}}} \end{align} sinφ=A2+B2+C2 m2+n2+p2 Am+Bn+Cp
(5)称为直线与平面的夹角公式.

  1. 直线与平面的位置关系

L ⊥ Π ⟺ L\bot Π \Longleftrightarrow L⊥Π s → ∥ n → \overrightarrow{s}\parallel\overrightarrow{n} s n ⟺ \Longleftrightarrow A m = B n = C p ; \frac{A}{m}=\large\frac{B}{n}=\frac{C}{p}; mA=nB=pC

L ∥ Π L\parallel Π LΠ ⟺ \Longleftrightarrow s → ⊥ n → \overrightarrow{s}\bot\overrightarrow{n} s n ⟺ \Longleftrightarrow A m + B n + C p = 0. \large Am+Bn+Cp=0. Am+Bn+Cp=0.


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值