一、文献目录
1、【文献学习】利用DeepLearning实现OFDM信号解调相关文献及源码汇总
2、【文献学习】Artificial Intelligence-aided OFDM Receiver:Design and Experimental Results
在FC-DNN和ComNet网络的基础上进行的研究和真实的实现。并针对离线训练的信道模型与实际环境不一致而导致的仿真与(over-the-air)OTA测试之间的性能差异,提出了一种新的在线训练策略SwitchNet接收机。
3、Deep Learning-Based Detector for OFDM-IM
https://ieeexplore.ieee.org/document/8684894:源码
本文介绍了在正交频分复用(OFDM-IM)系统中利用深度学习(DL)进行信号检测的第一次尝试。特别地,我们提出了一种新的基于DL的检测器,称为DeepIM,它使用一个具有完全连接层的深度神经网络来恢复OFDM-IM系统中的数据位。为了提高DeepIM的性能,在进入网络之前,根据域知识对接收到的信号和信道矢量进行预处理。利用仿真采集的数据集,首先对DeepIM进行离线训练,使误码率最小化,然后将训练后的模型应用于OFDM-IM的在线信号检测。仿真结果表明,与现有的手工设计检测器相比,DeepIM具有较低的运行时间,能够实现接近最优的误码率。