初等数论二

整数唯一分解定理

引理1

若p是一个素数,a是任意整数,则有 p ∣ a 或 ( a , p ) = 1 p\mid a或(a,p)=1 pa(a,p)=1

引理2

若p是素数,且 p ∣ a b p\mid ab pab,则 p ∣ a 或 p ∣ b p\mid a或p\mid b papb

定理1

任何大于1的正整数都能分解为素数得乘积,即对于整数 a > 1 , 有 且 仅 有 唯 一 表 达 式 a = p 1 p 2 . . . p n , p 1 ≤ p 2 ≤ . . . ≤ p n , 其 中 p 1 , p 2 . . . p n 都 是 素 数 a>1,有且仅有唯一表达式a=p_1p_2...p_n,p_1\leq p_2\leq ...\leq p_n,其中p_1,p_2...p_n都是素数 a>1,a=p1p2...pn,p1p2...pn,p1,p2...pn
任意大于1的整数能够唯一写成 a = p 1 α 1 p 2 α 2 . . . p k α k , 其 中 α i > 0 , p i < p j ( i < j ) 是 素 数 a=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k},其中\alpha_i>0,p_i<p_j(i<j)是素数 a=p1α1p2α2...pkαk,αi>0,pi<pj(i<j)对于a和b, ( a , b ) = p 1 m i n ( α 1 , β 1 ) p 2 m i n ( α 2 , β 2 ) . . . p k m i n ( α k , β k ) . [ a , b ] = p 1 m a x ( α 1 , β 1 ) p 2 m a x ( α 2 , β 2 ) . . . p k m a x ( α k , β k ) (a,b)=p_1^{min(\alpha_1,\beta_1)}p_2^{min(\alpha_2,\beta_2)}...p_k^{min(\alpha_k,\beta_k)}.\\ [a,b]=p_1^{max(\alpha_1,\beta_1)}p_2^{max(\alpha_2,\beta_2)}...p_k^{max(\alpha_k,\beta_k)} (a,b)=p1min(α1,β1)p2min(α2,β2)...pkmin(αk,βk).[a,b]=p1max(α1,β1)p2max(α2,β2)...pkmax(αk,βk)


由于x+y=max(x,y)+min(x,y),所以有ab=[a,b] (a,b)

一元不定方程

二元一次不定方程: a 1 x + a 2 y = n , 其 中 a 1 , a 2 , n 给 定 , a 1 a 2 ≠ 0 a_1x+a_2y=n,其中a_1,a_2,n给定,a_1a_2\neq0 a1x+a2y=n,a1,a2,na1a2=0

定理2

二元一次不定方程有解的充要条件是 ( a 1 , a 2 ) ∣ n (a_1,a_2)\mid n (a1,a2)n
证明:有解时显然成立,设 ( a 1 , a 2 ) = 1 及 a 1 > 0 , a 2 > 0 , 则 a 1 u + a 2 v = 1 , 于 是 x = n u , y = n v 有 解 (a_1,a_2)=1及a_1>0,a_2>0,则a_1u+a_2v=1,于是x=nu,y=nv有解 (a1,a2)=1a1>0,a2>0a1u+a2v=1,x=nuy=nv

定理3

( a 1 , a 2 ) = 1 (a_1,a_2)=1 (a1,a2)=1,则其全部解表示为 x = x 0 + a 2 t , y = y 0 − a 1 t , x 0 , y 0 为 二 元 一 次 不 定 方 程 的 以 一 组 解 x=x_0+a_2t,\\ y=y_0-a_1t,\\ x_0,y_0为二元一次不定方程的以一组解 x=x0+a2t,y=y0a1t,x0,y0

定理4

设 s ≥ 2 , s 元 一 次 不 定 方 程 a 1 x 1 + . . . + a s x s = n , a 1 . . . a s ≠ 0 设s\geq 2,s元一次不定方程a_1x_1+...+a_sx_s=n,a_1...a_s\neq0 s2,sa1x1+...+asxs=n,a1...as=0有解的充要条件是 ( a 1 , . . . , a s ) ∣ n (a_1,...,a_s)\mid n (a1,...,as)n

定理5

不定方程 a 1 x 1 + a 2 x 2 = n , ( a 1 , a 2 ) = 1 , a 1 > 0 , a 2 > 0 a_1x_1+a_2x_2=n,(a_1,a_2)=1,a_1>0,a_2>0 a1x1+a2x2=n,(a1,a2)=1,a1>0,a2>0 n > a 1 a 2 n>a_1a_2 n>a1a2时有整数解在这里插入图片描述在这里插入图片描述

同余

定义1

给定正整数m,则a,b同余记为 a ≡ b ( m o d    m ) a\equiv b(\mod m) ab(modm)否则记为 a ≢ b ( m o d    m ) a\not\equiv b(\mod m) ab(modm)
性质1 自反性,对称性,传递性

定理6

整数a,b对模m同余的充要条件时 m ∣ a − b m\mid a-b mab

定理7

如果 a ≡ b ( m o d    m ) , α ≡ β ( m o d    m ) , 则 有 ( 1 ) a x + α y ≡ b x + β y ( m o d    m ) , ( 2 ) a α ≡ b β ( m o d    m ) , ( 3 ) a n ≡ b n ( m o d    m ) , ( 6 ) f ( a ) ≡ f ( b ) ( m o d    m ) . a\equiv b(\mod m),\alpha \equiv \beta(\mod m),则有\\(1)ax+\alpha y\equiv bx+\beta y(\mod m),\\ (2)a\alpha \equiv b\beta (\mod m),\\(3)a^n\equiv b^n(\mod m),\\ (6)f(a)\equiv f(b)(\mod m). ab(modm),αβ(modm),(1)ax+αybx+βy(modm),(2)aαbβ(modm),(3)anbn(modm),(6)f(a)f(b)(modm).


定理8

如果 a c ≡ b c ( m o d    m ) , 且 若 ( m , c ) = d , 则 a ≡ b ( m o d    m d ) ac\equiv bc(\mod m),且若(m,c)=d,则\\ a\equiv b(\mod \frac{m}{d}) acbc(modm),m,c)=d,ab(moddm)
在这里插入图片描述

定理9

a ≡ b ( m o d    m i ) , i = 1 , 2 , . . . , n 则 a ≡ b ( m o d    [ m 1 , m 2 , . . . , m n ] ) a\equiv b(\mod m_i),i=1,2,...,n则a\equiv b(\mod [m_1,m_2,...,m_n]) ab(modmi),i=1,2,...,nab(mod[m1,m2,...,mn])在这里插入图片描述

剩余类和完全剩余系

定义2

设m是一个给定整数,Cr(r=0,1,…,m-1)表示所有形如qm+r的整数组成的集合,其中 q = 0 , ± 1 , ± 2... , 则 C 0 , C 1 , . . . , C m − 1 叫 做 模 m 的 剩 余 类 q=0,\pm1,\pm 2...,则C_0,C_1,...,C_{m-1}叫做模m的剩余类 q=0,±1,±2...C0,C1,...,Cm1m

定理10

设m>0,模m剩余类Cj,则,每个整数都包含在某个剩余类Cj中,两个整数x,y属于同一类的充要条件是 x ≡ y ( m o d    m ) x\equiv y(\mod m) xy(modm)

定义3

在模m的剩余类 C 0 , C 1 , . . . , C m − 1 C_0,C_1,...,C_{m-1} C0,C1,...,Cm1中各取一个数 a j ∈ C j a_j \in C_j ajCj,这m个数称为模m的一组完全剩余系

定理11

m个整数成为模m的完全剩余系的充要条件是两两对模m不同余

非负最小完全剩余

0,1,2,。。。,m-1

定理12

设(k,m)=1,而 a 0 , a 1 , . . . , a m − 1 a_0,a_1,...,a_{m-1} a0,a1,...,am1是模m的一组完全剩余系,则 k a 0 , k a 2 , . . . , k a m − 1 ka_0,ka_2,...,ka_{m-1} ka0,ka2,...,kam1也是模m的一组完系在这里插入图片描述

定理13

设 m 1 > 0 , m 2 > 0 , ( m 1 , m 2 ) = 1 , 而 x i , y j 分 别 通 过 模 m 1 , m 2 的 完 系 , 则 m 2 x i + m 1 y j 通 过 模 m 1 m 2 的 完 系 设m_1>0,m_2>0,(m_1,m_2)=1,而x_i,y_j分别通过模m_1,m_2的完系,则m_2x_i+m_1y_j通过模m_1m_2的完系 m1>0,m2>0,(m1,m2)=1,xi,yjm1,m2m2xi+m1yjm1m2

m 2 x 1 ′ + m 1 x 2 ′ − m 2 x 1 ′ ′ − m 1 x 2 ′ ′ ≡ 0 ( m o d    m 1 m 2 ) m_2x_1'+m_1x_2'-m_2x_1^{''}-m_1x_2^{''}\equiv 0(\mod m_1m_2) m2x1+m1x2m2x1m1x20(modm1m2)
在这里插入图片描述

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值