初等数论三

剩余类和完全剩余系

定理1威尔逊定理

设p是一个素数,则 ( p − 1 ) ! + 1 ≡ 0 ( m o d    p ) (p-1)!+1\equiv 0(\mod p) (p1)!+10(modp)
证明


充分性
以下的-1都是在模p意义下的,实际上就是p-1。
我们知道 1 ∗ 1 ≡ 1 ( m o d    p ) , ( − 1 ) ∗ ( − 1 ) ≡ 1 ( m o d    p ) 1∗1\equiv1(\mod p),(−1)∗(−1)\equiv1(\mod p) 111(modp),(1)(1)1(modp),且仅有这两组的逆元与本身相等。
这个很好理解,如果 x 2 ≡ 1 ( m o d    p ) , 那 么 x 2 − 1 ≡ 0 ( m o d    p ) x^2 \equiv 1(\mod p),那么x^2−1\equiv 0(\mod p) x21(modp)x210(modp),因式分解一下, ( x + 1 ) ( x − 1 ) ≡ 0 ( m o d    p ) (x+1)(x−1)\equiv 0(\mod p) (x+1)(x1)0(modp),所以x=1或-1。
然后除了这两个数之外,2…p-2中的每一个数一定有一个对应的逆元,一定不与自己相等,这一点上面证过了,而且如果把取逆元看做一个映射,这就是个双射。 a ∗ a − 1 ≡ 1 那 么 a − 1 ∗ a ≡ 1 , 所 以 a = ( a − 1 ) − 1 a*a^{-1}\equiv 1 那么a^{-1}*a\equiv 1,所以a=(a^{-1})^{-1} aa11a1a1a=(a1)1
,即这两个数互为逆元。

先证对于A中每一个元素a,均存在A中另一个元素b,使得 a b ≡ 1 ( m o d    p ) ab \equiv 1 (\mod p) ab1(modp)。首先,显然 1 ≤ b ≤ p − 1 1 \leq b \leq p-1 1bp1。然后,假设 b = = 1 , 则 a b = a ≠ 1 b == 1,则ab = a \neq1 b==1ab=a=1,不成立;再假设 b = = p − 1 , 则 a b = a ∗ ( p − 1 ) = a p − a ≡ p − a ( m o d p ) b == p-1,则ab = a*(p-1) = ap-a\equiv p-a (mod p) b==p1ab=a(p1)=apapa(modp),若 p − a = = 1 的 话 , 须 满 足 a = = p − 1 p-a == 1的话,须满足a == p-1 pa==1a==p1,不成立。得证。
再证不同的a对应的b不相同。假设存在两个不同的a对应的b相同,再假设这两个a分别为 a 1 , a 2 ( a 1 < a 2 ) 。 则 有 ( a 2 − a 1 ) ∗ b ≡ 0 ( m o d    p ) 。 而 ( a 2 − a 1 ) 、 b a_1,a_2(a_1 < a_2)。则有(a_2-a_1)*b ≡ 0 (\mod p)。而(a_2-a_1)、b a1a2(a1<a2)(a2a1)b0(modp)(a2a1)b均小于p且p为素数,故显然不成立。
如果p是2,结论显然成立,如果p>2,那么p一定是个奇素数,所以2…p-2中恰好有偶数个数,且他们两两配对后的乘积模p都是等于1的,再乘上一个1,再乘上个p-1,即-1,所以 ( p − 1 ) ! ≡ − 1 ( m o d    p ) (p-1)!\equiv −1(\mod p) (p1)!1(modp),当然前提是p是质数。


必要性
当p不是素数,那么令p=a*b ,其中1 < a < p-1 ,1 < b < p-1.

(1)若a≠b,

    因为(p-1)!=1*2*...*a*...*b*...*p-1,

    所以(p-1)!≡ 0 (mod a)        

           (p-1)!≡ 0 (mod b)

    可得(p-1)!≡ 0 (mod a*b) ,

          即 (p-1)!≡ 0 (mod p)

    与( p -1 )! ≡ -1 ( mod p )  矛盾

(2)若a=b

    因为(p-1)!=1*2*...*a*...*2a*...*p-1.

    所以(p-1)!≡ 0 (mod a)          

           (p-1)!≡ 0 (mod 2a)

    可得(p-1)!≡ 0 (mod a*2a) => (p-1)!≡ 0 (mod a*a) ,

      即 (p-1)!≡ 0 (mod p)

    与( p -1 )! ≡ -1 ( mod p )  矛盾

因此p只能是素数。

缩系

定义1

在一个模m的剩余类中的数与m互素,再在其中各取一个数组成的集合叫做模m的一组缩系

定义2

欧拉函数 φ ( n ) \varphi(n) φ(n)是一个定义在整数上的函数,值为序列0,1,2,。。。,n-1中与n互素的数的个数。
显然p为素数时, φ ( p ) = p − 1 \varphi(p)=p-1 φ(p)=p1

定理2

模m的一组缩系含有 φ ( m ) \varphi(m) φ(m)个数

定理3

a 1 , . . . , a φ ( m ) a_1,...,a_{\varphi (m)} a1,...,aφ(m) φ ( n ) \varphi(n) φ(n)个与m互素的整数,则其为缩系的充要条件是两两模m不同余

定理4

若(ai,m)=1,xi是通过模m的缩系,则aixi也是模m的缩系在这里插入图片描述

定理5 欧拉定理

m > 1 , ( a , m ) = 1 , 则 a φ ( m ) ≡ 1 ( m o d    m ) m>1, (a,m)=1,则a^{\varphi (m)}\equiv1(\mod m) m>1,(a,m)=1,aφ(m)1(modm)
证明:根据定理 a n ≡ b n ( m o d    m ) a^n\equiv b^n(\mod m) anbn(modm)或者如下:
在这里插入图片描述

定理6 费马小定理

若p是素数,则 a p ≡ a ( m o d    p ) a^p \equiv a(\mod p) apa(modp)

定理7

m 1 > 0 , m 2 > 0 , ( m 1 , m 2 ) = 1 , 而 x i , y j m_1>0,m_2>0,(m_1,m_2)=1,而x_i,y_j m1>0,m2>0,(m1,m2)=1,xi,yj分别通过模 m 1 , m 2 m_1,m_2 m1,m2的缩系,则 m 2 x i + m 1 y j 通 过 模 m 1 m 2 m_2x_i+m_1y_j通过模m_1m_2 m2xi+m1yjm1m2的缩系在这里插入图片描述

推论

( m 1 , m 2 ) = 1 , 则 φ ( m 1 m 2 ) = φ ( m 1 ) φ ( m 2 ) (m_1,m_2)=1,则\varphi(m_1m_2)=\varphi(m_1)\varphi(m_2) (m1,m2)=1,φ(m1m2)=φ(m1)φ(m2)

定理8

设n的标准分解 n = p 1 α 1 p 2 α 2 . . . p k α k n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k} n=p1α1p2α2...pkαk φ ( n ) = n ( 1 − 1 p 1 ) ( 1 − 1 p 2 ) . . . ( 1 − 1 p k ) \varphi(n)=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})...(1-\frac{1}{p_k}) φ(n)=n(1p11)(1p21)...(1pk1)在这里插入图片描述

一次同余式

定义3

在这里插入图片描述

定理9

设(a,m)=1,m>0,则同余式 a x ≡ b ( m o d    m ) ax\equiv b(\mod m) axb(modm)恰有一个解 x ≡ b a φ ( m ) − 1 ( m o d    m ) x\equiv ba^{\varphi (m)-1}(\mod m) xbaφ(m)1(modm),将 a x ≡ 1 ( m o d    m ) 的 解 a φ ( m ) − 1 ax\equiv 1(\mod m)的解a^{\varphi (m)-1} ax1(modm)aφ(m)1称为a的逆元,记为 a − 1 a^{-1} a1在这里插入图片描述

定理10

设(a,m)=d,m>0,则同余式 a x ≡ b ( m o d    m ) ax\equiv b(\mod m) axb(modm)有解的充要条件是 d ∣ b d\mid b db
在这里插入图片描述

定理11

( a , m ) = d , m > 0 , d ∣ b (a,m)=d,m>0,d\mid b (a,m)=d,m>0,db,则同余式 a x ≡ b ( m o d    m ) ax\equiv b(\mod m) axb(modm)有d个解。在这里插入图片描述

模是素数的同余式

定理12 拉格朗日定理

设p是素数, f ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 1 x + a 0 , n > 0 , a n ≢ 0 ( m o d    p ) f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0,n>0,a_n\not\equiv 0(\mod p) f(x)=anxn+an1xn1+...+a1x+a0,n>0,an0(modp)最多有n个解。在这里插入图片描述在这里插入图片描述

定理13

在这里插入图片描述

定理14

在这里插入图片描述

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值