机器学习100天-多元线性回归 [代码实现细节分析]

原始数据:
在这里插入图片描述


(1)导入库

import pandas as pd
import numpy as np

(2)导入数据集:数据中存在值为0的丢失数据情况

dataset = pd.read_csv('50_Startups.csv')
X = dataset.iloc[ : , :-1].values
Y = dataset.iloc[ : ,  4 ].values

在这里插入图片描述
在这里插入图片描述
(3)数据预处理:
1:将丢失数据0使用平均值代替

from sklearn.preprocessing import Imputer
imputer = Imputer(missing_values = 0, strategy = "mean", axis = 0)
imputer = imputer.fit(X[:,0:3])
X[:,0:3] = imputer.transform(X[:,0:3])

在这里插入图片描述
2:将类别数据数字化

from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder = LabelEncoder()
X[: , 3] = labelencoder.fit_transform(X[ : , 3])

在这里插入图片描述
3:将类别数字转换为onehot类型

onehotencoder = OneHotEncoder(categorical_features = [3])
X = onehotencoder.fit_transform(X).toarray()

在这里插入图片描述
(4)躲避虚拟变量陷阱:丢弃第一列数据,他可以被其他属性预测

X = X[: , 1:]

在这里插入图片描述
(5)拆分数据集为训练集和测试集

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)

(6)在训练集上训练多元线性回归模型

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor = regressor.fit(X_train, Y_train)

(7)在测试集上预测结果

y_pred = regressor.predict(X_test)

多元线性回归:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值