#机器学习--高等数学基础--第三章:微分中值定理与导数的应用

引言

        本系列博客旨在为机器学习(深度学习)提供数学理论基础。因此内容更为精简,适合二次学习的读者快速学习或查阅。


1、微分中值定理

        1)费马引理,设函数 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 的某邻域 U ( x 0 ) U(x_{0}) U(x0) 内有定义,并且在 x 0 x_{0} x0 处可导,如果对任意的 x ∈ U ( x 0 ) x\in U(x_{0}) xU(x0) ,有 f ( x ) ≤ f ( x 0 ) f(x)\le f(x_{0}) f(x)f(x0) (或 f ( x ) ≥ f ( x 0 ) f(x)\ge f(x_{0}) f(x)f(x0) ),那么 f ′ ( x 0 ) = 0 f'(x_{0})=0 f(x0)=0 ,通常称导数等于零的点为函数的驻点(或稳定点临界点)。

        2)罗尔定理,如果函数 f ( x ) f(x) f(x) 满足:
                (1)在闭区间 [ a , b ] [a,b] [a,b] 上连续;
                (2)在开区间 ( a , b ) (a,b) (a,b) 内可导;
                (3)在区间端点处的函数值相等,即 f ( a ) = f ( b ) f(a)=f(b) f(a)=f(b)
        那么在 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ a < ξ < b a<\xi<b a<ξ<b ),使得 f ′ ( ξ ) = 0 f'(\xi)=0 f(ξ)=0

        3)拉格朗日中值定理(微分中值定理),如果函数 f ( x ) f(x) f(x) 满足:
                (1)在闭区间 [ a , b ] [a,b] [a,b] 上连续;
                (2)在开区间 ( a , b ) (a,b) (a,b) 内可导,
        那么在 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ a < ξ < b a<\xi<b a<ξ<b ),使以下等式成立: f ′ ( ξ ) = f ( b ) − f ( a ) b − a f'(\xi)=\frac{f(b)-f(a)}{b-a} f(ξ)=baf(b)f(a)

        4)如果函数 f ( x ) f(x) f(x) 在区间 I I I 上连续, I I I 内可导且导数恒为零,那么 f ( x ) f(x) f(x) 在区间 I I I 上是一个常数。

        5)柯西中值定理,如果函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 满足:
                (1)在闭区间 [ a , b ] [a,b] [a,b] 上连续;
                (2)在开区间 ( a , b ) (a,b) (a,b) 内可导;
                (3)对任一 x ∈ ( a , b ) x\in (a,b) x(a,b) F ′ ( x ) ≠ 0 F'(x)\neq0 F(x)=0
        那么在 ( a , b ) (a,b) (a,b) 内至少有一点 ξ \xi ξ ,使以下等式成立: f ( b ) − f ( a ) F ( b ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) \frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)} F(b)F(a)f(b)f(a)=F(ξ)f(ξ)


2、洛必达法则

        1)设:
        (1)当 x → a x\to a xa 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
        (2)在点 a a a 的某去心邻域内, f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F'(x)\neq0 F(x)=0
        (3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\to a}\frac{f'(x)}{F'(x)} limxaF(x)f(x) 存在(或为无穷大),
        则: lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim_{x\to a}\frac{f(x)}{F(x)}=\lim_{x\to a}\frac{f'(x)}{F'(x)} xalimF(x)f(x)=xalimF(x)f(x)

        2)设:
        (1)当 x → ∞ x\to \infty x 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
        (2)当 ∣ x ∣ > N |x|>N x>N f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x) 都存在,且 F ′ ( x ) ≠ 0 F'(x)\neq0 F(x)=0
        (3) lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \lim_{x\to \infty}\frac{f'(x)}{F'(x)} limxF(x)f(x) 存在(或为无穷大),
        则: lim ⁡ x → ∞ f ( x ) F ( x ) = lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \lim_{x\to \infty}\frac{f(x)}{F(x)}=\lim_{x\to \infty}\frac{f'(x)}{F'(x)} xlimF(x)f(x)=xlimF(x)f(x)


3、泰勒公式

        1)如果函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处具有 n n n 阶导数,那么存在 x 0 x_{0} x0 的一个邻域,对于该邻域内的任一 x x x ,有 f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{f''(x_{0})}{2!}(x-x_{0})^{2}+\dots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)
        其中 R n ( x ) = o ( ( x − x 0 ) n ) R_{n}(x)=o((x-x_{0})^{n}) Rn(x)=o((xx0)n)

        2)如果函数 f ( x ) f(x) f(x) x 0 x_{0} x0 的某个邻域 U ( x 0 ) U(x_{0}) U(x0) 内具有 ( n + 1 ) (n+1) (n+1) 阶导数,那么对任一 x ∈ U ( x 0 ) x\in U(x_{0}) xU(x0) ,有
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + ⋯ + f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) f(x)=f(x_{0})+f'(x_{0})(x-x_{0})+\frac{f''(x_{0})}{2!}(x-x_{0})^{2}+\dots+\frac{f^{(n)}(x_{0})}{n!}(x-x_{0})^{n}+R_{n}(x) f(x)=f(x0)+f(x0)(xx0)+2!f′′(x0)(xx0)2++n!f(n)(x0)(xx0)n+Rn(x)
        其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1
        这里 ξ \xi ξ x 0 x_{0} x0 x x x 之间的某个值。


4、函数的单调性与曲线的凹凸性

        定义:设 f ( x ) f(x) f(x) 在区间 I I I 上连续,如果对 I I I 上任意两点 x 1 , x 2 x_{1},x_{2} x1,x2 恒有 f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_{1}+x_{2}}{2})<\frac{f(x_{1})+f(x_{2})}{2} f(2x1+x2)<2f(x1)+f(x2) 那么称 f ( x ) f(x) f(x) I I I 上的图形是凹的;如果恒有 f ( x 1 + x 2 2 ) > f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_{1}+x_{2}}{2})>\frac{f(x_{1})+f(x_{2})}{2} f(2x1+x2)>2f(x1)+f(x2) ,那么称 f ( x ) f(x) f(x) I I I 上的图形是凸的

        定理:
        1)设函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 内可导。
                (1)如果在 ( a , b ) (a,b) (a,b) f ′ ( x ) ≥ 0 f'(x)\ge0 f(x)0 ,且等号仅在有限多个点处成立,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b] 上单调增加;
                (2)如果在 ( a , b ) (a,b) (a,b) f ′ ( x ) ≤ 0 f'(x)\le0 f(x)0 ,且等号仅在有限多个点处成立,那么函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a,b] [a,b] 上单调减少。

        2)设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上连续,在 ( a , b ) (a,b) (a,b) 内具有一阶和二阶导数,那么:
                (1)若在 ( a , b ) (a,b) (a,b) f ′ ′ ( x ) > 0 f''(x)>0 f′′(x)>0 ,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的图形是凹的;
                (2)若在 ( a , b ) (a,b) (a,b) f ′ ′ ( x ) < 0 f''(x)<0 f′′(x)<0 ,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的图形是凸的。


5、函数的极值

        定义:设函数 f ( x ) f(x) f(x) 在点 x 0 x_{0} x0 的某邻域 U ( x 0 ) U(x_{0}) U(x0) 内有定义,如果对于去心邻域 U o ( x 0 ) \overset{o}{U}(x_{0}) Uo(x0) 内的任一 x x x ,有 f ( x ) < f ( x 0 ) f(x)<f(x_{0}) f(x)<f(x0) (或 f ( x ) > f ( x 0 ) f(x)>f(x_{0}) f(x)>f(x0) ),那么就称 f ( x 0 ) f(x_{0}) f(x0) 是函数 f ( x ) f(x) f(x) 的一个极大值(或极小值),函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点

        定理:
        1)设函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处可导,且在 x 0 x_{0} x0 处取得极值,则 f ′ ( x 0 ) = 0 f'(x_{0})=0 f(x0)=0

        2)设函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处连续,且在 x 0 x_{0} x0 的某去心邻域 U o ( x 0 , δ ) \overset{o}{U}(x_{0},\delta) Uo(x0,δ) 内可导:
                (1)若 x ∈ ( x 0 − δ , x 0 ) x\in(x_{0}-\delta,x_{0}) x(x0δ,x0) 时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 ,而 x ∈ ( x 0 , x 0 + δ ) x\in(x_{0},x_{0}+\delta) x(x0,x0+δ) 时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 ,则 f ( x ) f(x) f(x) x 0 x_{0} x0 处取得极大值;
                (2)若 x ∈ ( x 0 − δ , x 0 ) x\in(x_{0}-\delta,x_{0}) x(x0δ,x0) 时, f ′ ( x ) < 0 f'(x)<0 f(x)<0 ,而 x ∈ ( x 0 , x 0 + δ ) x\in(x_{0},x_{0}+\delta) x(x0,x0+δ) 时, f ′ ( x ) > 0 f'(x)>0 f(x)>0 ,则 f ( x ) f(x) f(x) x 0 x_{0} x0 处取得极小值;
                (3)若 x ∈ U o ( x 0 , δ ) x\in\overset{o}{U}(x_{0},\delta) xUo(x0,δ) 时, f ′ ( x ) f'(x) f(x) 的符号保持不变,则 f ( x ) f(x) f(x) x 0 x_{0} x0 处没有极值。

        3)设函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处具有二阶导数且 f ′ ( x 0 ) = 0 f'(x_{0})=0 f(x0)=0 f ′ ′ ( x 0 ) ≠ 0 f''(x_{0})\neq0 f′′(x0)=0 ,则:
                (1)当 f ′ ′ ( x 0 ) < 0 f''(x_{0})<0 f′′(x0)<0 时,函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处取得极大值;
                (2)当 f ′ ′ ( x 0 ) > 0 f''(x_{0})>0 f′′(x0)>0 时,函数 f ( x ) f(x) f(x) x 0 x_{0} x0 处取得极小值。


6、求方程的近似解

        1、二分法;
        2、切线法;
        3、割线法。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值