Attention Guided Graph Convolutional Networks for Relation Extraction

Attention Guided Graph Convolutional Networks for Relation Extraction

1. 引言

  • 现有的关系提取模型分为基于序列的和基于依赖的:
    • 基于序列的模型只对单词序列进行操作
    • 基于依赖的模型将依赖树合并到模型中,可以捕获表面形式中模糊的非局部句法关系,还提出了各种剪枝策略来提取依赖关系
    • 基于规则的剪枝策略可能会消除完整树种的一些重要信息
    • AGGCN可以在全树上工作,使用“软剪枝”将原始依赖树转换为完全连接的边缘加权图

2. AGGCN

2.1 GCNs

h i ( l ) = ρ ( ) ∑ j = 1 n A i j W l h j l − 1 + b ( l ) \rm{h}_i^{(l)}=ρ()\sum_{j=1}^nA_{ij}W^{l}h_j^{l-1}+b^{(l)} hi(l)=ρ()j=1nAijWlhjl1+b(l)

W ( l ) = 权 重 矩 阵 W^{(l)}=权重矩阵 W(l)=

b ( l ) = 偏 置 向 量 b^{(l)}=偏置向量 b(l)=

ρ = 激 活 函 数 \rho = 激活函数 ρ=

h i ( 0 ) 表 示 初 始 输 入 x i , x i ∈ R d , d = 输 入 特 征 维 数 h_i^{(0)}表示初始输入x_i, x_i∈R^d, d=输入特征维数 hi(0)xi,xiRdd=

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W0s09Yhg-1626238737837)(https://github.com/aixiuzhi/sanyuanzu/blob/main/model.png)]

2.2 Attention Guided Layer
  • 在Attention Guided Layer中,通过构建注意引导的邻接矩阵 A ~ \widetilde{A} A ,将原始依赖树转换为完全连接的边缘加权图,每个 A ~ \widetilde{A} A 对应某个完全连接的图,每个输入 A i j A_{ij} A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值