Attention Guided Graph Convolutional Networks for Relation Extraction
1. 引言
- 现有的关系提取模型分为基于序列的和基于依赖的:
- 基于序列的模型只对单词序列进行操作
- 基于依赖的模型将依赖树合并到模型中,可以捕获表面形式中模糊的非局部句法关系,还提出了各种剪枝策略来提取依赖关系
- 基于规则的剪枝策略可能会消除完整树种的一些重要信息
- AGGCN可以在全树上工作,使用“软剪枝”将原始依赖树转换为完全连接的边缘加权图
2. AGGCN
2.1 GCNs
h i ( l ) = ρ ( ) ∑ j = 1 n A i j W l h j l − 1 + b ( l ) \rm{h}_i^{(l)}=ρ()\sum_{j=1}^nA_{ij}W^{l}h_j^{l-1}+b^{(l)} hi(l)=ρ()j=1∑nAijWlhjl−1+b(l)
W ( l ) = 权 重 矩 阵 W^{(l)}=权重矩阵 W(l)=权重矩阵
b ( l ) = 偏 置 向 量 b^{(l)}=偏置向量 b(l)=偏置向量
ρ = 激 活 函 数 \rho = 激活函数 ρ=激活函数
h i ( 0 ) 表 示 初 始 输 入 x i , x i ∈ R d , d = 输 入 特 征 维 数 h_i^{(0)}表示初始输入x_i, x_i∈R^d, d=输入特征维数 hi(0)表示初始输入xi,xi∈Rd,d=输入特征维数
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-W0s09Yhg-1626238737837)(https://github.com/aixiuzhi/sanyuanzu/blob/main/model.png)]
2.2 Attention Guided Layer
-
在Attention Guided Layer中,通过构建注意引导的邻接矩阵 A ~ \widetilde{A} A ,将原始依赖树转换为完全连接的边缘加权图,每个 A ~ \widetilde{A} A 对应某个完全连接的图,每个输入 A i j A_{ij} A