随机变量的最大最小值独立性问题

作本篇的原因是下面这道题(出自2023李林6第二套)
请添加图片描述
解答:
请添加图片描述

而引发了对于随机变量的max和min值变量来说,二者是否独立的问题。推理如下:

考虑两个独立的随机变量 X , Y X, Y X,Y,变量 m , M m,M m,M为其最小最大值变量, m = m i n ( X , Y ) , M = m i n ( X , Y ) m=min(X,Y), M=min(X,Y) m=min(X,Y),M=min(X,Y).
m , M m, M m,M独立,则有
P ( m > a , M ≤ b ) = P ( m > a ) P ( M ≤ b ) P(m>a, M\le b)=P(m>a)P(M\le b) P(m>a,Mb)=P(m>a)P(Mb)

其中左边为
P ( a < x ≤ b , a < y ≤ b ) = P ( a < x ≤ b ) P ( a < y ≤ b ) P(a<x\le b,a<y\le b)=P(a<x\le b)P(a<y\le b) P(a<xb,a<yb)=P(a<xb)P(a<yb)

右边为
P ( x > a , y > a ) P ( x ≤ b , y ≤ b ) = P ( x > a ) P ( y > a ) P ( x ≤ b ) P ( y ≤ b ) P(x>a,y>a)P(x\le b,y\le b)=P(x>a)P(y>a)P(x\le b)P(y\le b) P(x>a,y>a)P(xb,yb)=P(x>a)P(y>a)P(xb)P(yb)

若要使两边相等,则必须使
P ( a < x ≤ b ) = P ( x > a ) P ( x ≤ b ) P(a<x\le b)=P(x>a)P(x\le b) P(a<xb)=P(x>a)P(xb)

这显然是不必然成立的。

实际上,当且仅当 P ( X > Y ) = 1 P(X>Y)=1 P(X>Y)=1 P ( X < Y ) = 1 P(X<Y)=1 P(X<Y)=1成立时, m a x ( X , Y ) , m i n ( X , Y ) max(X,Y),min(X,Y) max(X,Y),min(X,Y)才独立

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值