作本篇的原因是下面这道题(出自2023李林6第二套)
解答:
而引发了对于随机变量的max和min值变量来说,二者是否独立的问题。推理如下:
考虑两个独立的随机变量
X
,
Y
X, Y
X,Y,变量
m
,
M
m,M
m,M为其最小最大值变量,
m
=
m
i
n
(
X
,
Y
)
,
M
=
m
i
n
(
X
,
Y
)
m=min(X,Y), M=min(X,Y)
m=min(X,Y),M=min(X,Y).
若
m
,
M
m, M
m,M独立,则有
P
(
m
>
a
,
M
≤
b
)
=
P
(
m
>
a
)
P
(
M
≤
b
)
P(m>a, M\le b)=P(m>a)P(M\le b)
P(m>a,M≤b)=P(m>a)P(M≤b)
其中左边为
P
(
a
<
x
≤
b
,
a
<
y
≤
b
)
=
P
(
a
<
x
≤
b
)
P
(
a
<
y
≤
b
)
P(a<x\le b,a<y\le b)=P(a<x\le b)P(a<y\le b)
P(a<x≤b,a<y≤b)=P(a<x≤b)P(a<y≤b)
右边为
P
(
x
>
a
,
y
>
a
)
P
(
x
≤
b
,
y
≤
b
)
=
P
(
x
>
a
)
P
(
y
>
a
)
P
(
x
≤
b
)
P
(
y
≤
b
)
P(x>a,y>a)P(x\le b,y\le b)=P(x>a)P(y>a)P(x\le b)P(y\le b)
P(x>a,y>a)P(x≤b,y≤b)=P(x>a)P(y>a)P(x≤b)P(y≤b)
若要使两边相等,则必须使
P
(
a
<
x
≤
b
)
=
P
(
x
>
a
)
P
(
x
≤
b
)
P(a<x\le b)=P(x>a)P(x\le b)
P(a<x≤b)=P(x>a)P(x≤b)
这显然是不必然成立的。