如何理解“对矩阵进行初等行变换不改变其列向量的线性关系”?

一. 对矩阵进行初等行变换不改变其列向量的线性关系

对矩阵A进行初等行变换相当于左乘一个可逆矩阵P。

把A看作是列向量组,若有Ax=0,则其中的x就说明了列向量的线性关系:
[ α 1 , α 2 , α 3 ] [ x 1 x 2 x 3 ] = [ 0 ] \left[ \alpha_1 ,\alpha_2, \alpha_3 \right] \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}=\begin{bmatrix} 0\end{bmatrix} [α1,α2,α3] x1x2x3 =[0]
x 1 α 1 + x 2 α 2 + x 3 α 3 = 0 x_1\alpha_1+x_2\alpha_2+x_3\alpha_3=0 x1α1+x2α2+x3α3=0

若对A进行初等行变换后得到了 P A x = 0 PAx=0 PAx=0,知 A x = 0 Ax=0 Ax=0 P A x = 0 PAx=0 PAx=0同解,就说明了x也适用于矩阵 P A PA PA的列向量之间的线性关系

所以 A A A P A PA PA 的列向量有相同的线性关系。

二. 对矩阵进行初等行变换,所得矩阵与原矩阵的行向量组等价

理解上解释就是:PA相当于给A做行变换,若P可逆,则PA的行向量组与A的行向量组等价。
此外, P A PA PA的行向量组与A的行向量组等价。把A看作是行向量组,若 P A = B PA=B PA=B,有:
[ p 11 p 12 p 13 p 21 p 22 p 23 p 31 p 32 p 33 ] [ α 1 α 2 α 3 ] = [ β 1 β 2 β 3 ] = [ p 11 α 1 + p 12 α 2 + p 13 α 3 p 21 α 1 + p 22 α 2 + p 23 α 3 p 31 α 1 + p 32 α 2 + p 33 α 3 ] \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}\begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha _3 \end{bmatrix}=\begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix} =\begin{bmatrix} p_{11}\alpha _{1}+p_{12}\alpha_2 +p_{13}\alpha _{3} \\ p_{21}\alpha _{1}+p_{22}\alpha_2+p_{23}\alpha_3 \\ p_{31}\alpha _{1}+p_{32}\alpha_2+p_{33}\alpha_3 \end{bmatrix} p11p21p31p12p22p32p13p23p33 α1α2α3 = β1β2β3 = p11α1+p12α2+p13α3p21α1+p22α2+p23α3p31α1+p32α2+p33α3
可知矩阵B的每一个行向量都能用矩阵A的行向量进行线性表出。又由于矩阵P可逆,故 A = P − 1 B A=P^{-1}B A=P1B,同理可知矩阵A的每一个行向量也可由矩阵B的行向量进行线性表出。

因此矩阵A的行向量组与矩阵B的行向量组等价。
即若 P A = B PA=B PA=B,则B的行向量组与A的行向量组等价,B的行秩等于A的行秩

(I)、(II)等价 ⇔ \Leftrightarrow r(I)=r(II)=r(I,II)

三. 设A是mxn矩阵,B是nxs矩阵:若r(A)=n(列满秩),则r(AB)=r(B);若r(B)=n(行满秩),则r(AB)=r(A)

  1. 证明:由公式
    r ( A ) + r ( B ) − n ≤ r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(A)+r(B)-n\le r(AB)\le min\{r(A), r(B)\} r(A)+r(B)nr(AB)min{r(A),r(B)}
    知:
    • r ( A ) = n r(A)=n r(A)=n时, n + r ( B ) − n ≤ r ( A B ) ≤ r ( B ) n+r(B)-n\le r(AB)\le r(B) n+r(B)nr(AB)r(B)
      故有 r ( A B ) = r ( B ) r(AB)=r(B) r(AB)=r(B)
    • r ( B ) = n r(B)=n r(B)=n时, r ( A ) + n − n ≤ r ( A B ) ≤ r ( A ) r(A)+n-n\le r(AB)\le r(A) r(A)+nnr(AB)r(A)
      故有 r ( A B ) = r ( A ) r(AB)=r(A) r(AB)=r(A)
  2. 几何意义:左乘一个列满秩矩阵不改变矩阵的秩;右乘一个行满秩矩阵不改变矩阵的秩。
    A m × n A_{m\times n} Am×n B n × s B_{n\times s} Bn×s. A列满秩,说明 m ≥ n m\ge n mn,因此把A先行变换后上下分块,使得A的上块为 A n × n 1 A^1_{n\times n} An×n1(可逆矩阵),下块为 A ( m − n ) × n 2 A^2_{(m-n)\times n} A(mn)×n2。然后分别右乘B矩阵(即B矩阵左乘一个A矩阵),得到AB的上块为B左乘可逆矩阵,秩不变。因此有 r ( A B ) ≥ r ( B ) r(AB)\ge r(B) r(AB)r(B).
    又因为有 r ( A B ) ≤ m i n { r ( A ) , r ( B ) } r(AB)\le min\{r(A), r(B)\} r(AB)min{r(A),r(B)}
    所以有 r ( A B ) = r ( B ) r(AB)=r(B) r(AB)=r(B)

四. 设A,B为n阶矩阵,则 r ( [ A    A B ] ) = r ( A ) r([A \ \ AB])=r(A) r([A  AB])=r(A)成立,但 r ( [ A    B A ] ) = r ( A ) r([A\ \ BA])=r(A) r([A  BA])=r(A)不成立

  1. 证明:由 [ A    A B ] = A [ E    B ] [A\ \ AB] =A[E\ \ B] [A  AB]=A[E  B],可知
    r ( [ A    A B ] ) ≤ r ( A ) r([A \ \ AB])\le r(A) r([A  AB])r(A)
    又因为 A A A [ A    A B ] [A\ \ AB] [A  AB]的子矩阵,因此有
    r ( [ A    A B ] ) ≥ r ( A ) r([A \ \ AB])\ge r(A) r([A  AB])r(A)
    所以 r ( [ A    A B ] ) = r ( A ) r([A \ \ AB])= r(A) r([A  AB])=r(A)
    但由矩阵的乘法规则, [ A    B A ] ≠ [ E    B ] A [A\ \ BA] \ne [E\ \ B]A [A  BA]=[E  B]A
  2. 几何意义:
    由二得,若B为可逆矩阵,则 A B AB AB 的列向量组与 A A A 的列向量组等价;若B不为可逆矩阵,则 A B AB AB的列秩就小于A的列秩( A B AB AB相当于给 A A A作列变换)。 B A BA BA 的行向量组与 A A A 的行向量组有相同的关系( B A BA BA相当于给 A A A作行变换)。

    所以 [ A    A B ] [A \ \ AB] [A  AB] 的列向量组与 A A A 的列向量组等价, [ A B A ] \begin{bmatrix}A \\ BA \end{bmatrix} [ABA] 的行向量组与 A A A 的行向量组等价

五. 设A,B为满足AB=0的任意两个非零矩阵,则必有:A的列向量组线性相关,B的行向量组线性相关

  1. 证明:
    A m × n , B n × l A_{m\times n},B_{n\times l} Am×n,Bn×l,由 A B = 0 AB=0 AB=0
    r ( A ) + r ( B ) ≤ n r(A)+r(B)\le n r(A)+r(B)n
    又由矩阵非零,有: r ( A ) ≥ 1 , r ( B ) ≥ 1 r(A)\ge1,r(B)\ge1 r(A)1,r(B)1
    因此得, r ( A ) < n , r ( B ) < n r(A)\lt n,r(B)\lt n r(A)<n,r(B)<n
    因为“矩阵的秩=其行向量组的秩=其列向量组的秩”
    所以可得:
    A的列秩小于n,又因为A的列数为n,所以A的列向量组线性相关;
    B的行秩小于n,又因为B的行数为n,所以B的行向量组线性相关。
  2. 几何意义:
    • “A的列向量组线性相关”:
      A B = 0 AB=0 AB=0,得:B的列向量均为 A x = 0 Ax=0 Ax=0 的解
      因为矩阵B非零,所以B至少存在一个列向量 β i \beta_i βi,使得 A β i = 0 A\beta_i=0 Aβi=0,即
      [ α 1 , α 2 , . . . , α n ] [ b 1 b 2 . . . b n ] = 0 \begin{bmatrix}\alpha_1, \alpha_2,...,\alpha_n\end{bmatrix}\begin{bmatrix}b_1\\b_2\\...\\b_n\end{bmatrix}=0 [α1,α2,...,αn] b1b2...bn =0,即
      b 1 α 1 + b 2 α 2 + . . . + b n α n = 0 b_1\alpha_1+b_2\alpha_2+...+b_n\alpha_n=0 b1α1+b2α2+...+bnαn=0,且其中 b 1 , . . . b n b_1,...b_n b1,...bn不全为零
      即矩阵A的列向量组线性相关
    • “B的行向量组线性相关”:
      A B = 0 AB=0 AB=0,得 B T A T = 0 B^TA^T=0 BTAT=0,所以 A T A^T AT的列向量均为 B T x = 0 B^Tx=0 BTx=0的解。
      后面的步骤和上面的一样了

六. 一些题目

  1. 设A、B为n阶实矩阵,下列不成立的是
    (A) r [ A O O A T A ] = 2 r ( A ) r\begin{bmatrix}A & O \\ O & A^TA \end{bmatrix}=2r(A) r[AOOATA]=2r(A)
    (B) r [ A A B O A T ] = 2 r ( A ) r\begin{bmatrix}A & AB \\ O & A^T \end{bmatrix}=2r(A) r[AOABAT]=2r(A)
    (C) r [ A B A O A A T ] = 2 r ( A ) r\begin{bmatrix}A & BA \\ O & AA^T \end{bmatrix}=2r(A) r[AOBAAAT]=2r(A)
    (D) r [ A O B A A T ] = 2 r ( A ) r\begin{bmatrix}A & O \\ BA & A^T \end{bmatrix}=2r(A) r[ABAOAT]=2r(A)


    选C。
    对于A,一眼真;
    对于B、D:可分成二矩阵相乘:
    B: [ A A B O A T ] = [ A O O A T ] [ E B O E ] \begin{bmatrix}A & AB \\ O & A^T \end{bmatrix}=\begin{bmatrix}A & O \\ O & A^T \end{bmatrix}\begin{bmatrix}E & B \\ O & E \end{bmatrix} [AOABAT]=[AOOAT][EOBE]
    D: [ A O B A A T ] = [ E O B E ] [ A O O A T ] \begin{bmatrix}A & O \\ BA & A^T \end{bmatrix}=\begin{bmatrix}E & O \\ B & E \end{bmatrix}\begin{bmatrix}A & O \\ O & A^T \end{bmatrix} [ABAOAT]=[EBOE][AOOAT]
    对于C:1)可通过举反例;
    2)可通过一些几何意义: A A A A A T AA^T AAT秩相同,若均不可逆。且 B A BA BA从行来看表示将 A A A进行一系列行变换,从列来看表示将 B B B进行一系列列变换,就有可能导致将原本 A A A空缺的行给补上,并把原本 A A T AA^T AAT空缺的列给补上,因此会导致整体矩阵的秩大于 2 r ( A ) 2r(A) 2r(A)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值