深度学习——day33 class1 week4 深层神经网络

4.1 深层神经网络

在这里插入图片描述

4.1.1 Deep neural network notation

在这里插入图片描述
al 等于预测输出,w:权重 ,b:python中的广播

4.2 深层网络中的向前传播

tips:

  • 输入层是第 0 层,A ^ [0] = X
  • 每一层的输出 z^ [n] = 这一层的参数w^ [n] * 前一层的激活函数 a^ [n-1] + 这一层的偏置向量 b^ [n]
  • 最后y’ = g^ [4] (Z ^ [4]) = A ^ [4]
  • 目前只能显式的使用for循环来计算
    在这里插入图片描述

4.3 核对矩阵的维数

4.3.1 W矩阵维度 计算如图所示: 在这里插入图片描述

因此,以此类推可以求出w ^ [1,2,3,4,5…] 的维度
在这里插入图片描述
总结

  • w,b,dw,db 的维度应该相同在这里插入图片描述

在这里插入图片描述

4.3.2 Vectorized implementation

不考虑b
在这里插入图片描述
**考虑 b **
在这里插入图片描述
矩阵计算前后维数:帮助排查bug
在这里插入图片描述

4.4 为什么使用深层表示

4.4.1 Intuition about deep representation

前几层识别的是简单的特征,组合起来深度学习才能识别整个脸部
在这里插入图片描述

4.4.2 Circuit theory and deep learning

  • Informally: There are functions you can compute with a “small”L-layer deep neural network that shallower networksrequire exponentially more hidden units to compute.
    左边是多层,右边是单层;时间复杂度相差很大
    在这里插入图片描述

4.5 搭建深层神经网络块

4.5.1 Forward and backward functions

缓存:
在这里插入图片描述
在这里插入sad描述

方框内是计算用的参数,红色箭头为反向传播
在这里插入图片描述

4.5.2 NN的一个梯度下降循环

神经网络计算过程:蓝色:正想向,红色:反向,绿色:总过程
cash:缓存
在这里插入图片描述

4.6 前向和反向传播

4.6.1 Forward propagation for layer l在这里插入图片描述

4.6.2 Backward propagation for layer l

左边是等式及其含义;右边是向量化表示
在这里插入图片描述

4.6.3 Summary

dA是向量化
在这里插入图片描述

4.7 参数 VS 超参数

4.7.1 什么是超参数

从某种程度上最终决定w和b的参数,会在class2 有所提及
在这里插入图片描述

4.7.2 Applied deep learning is a veryempirical process

先尝试一个超参数,试验后观察损失是否下降,然后再调整,try try try again!
在这里插入图片描述

4.8 这和大脑有什么关系?

在这里插入图片描述

logistic回归,这种类比已经过时在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值