Deepseek本地训练流程(无需专业知识)从数据准备到模型部署

博主介绍:全网粉丝10w+、CSDN合伙人、华为云特邀云享专家,阿里云专家博主、星级博主,51cto明日之星,热爱技术和分享、专注于Java技术领域
🍅文末获取源码联系🍅
👇🏻 精彩专栏推荐订阅👇🏻 不然下次找不到哟

本地训练流程(无需专业知识),从数据准备到模型部署的完整操作指南:


一、准备训练数据

1. 收集数据
  • 把公司资料整理成 txt/docx/pdf 文件,例如:
    /mydata/
    ├─ 产品手册.pdf
    ├─ 客服对话记录.xlsx
    └─ 技术文档.docx
    
2. 转换数据格式
  • 新建 data.jsonl 文件,每条数据格式如下(用记事本就能编辑):
    {
         "instruction": "公司的主打产品是什么?", "output": "我们主要生产智能家居设备..."}
    {
         "instruction": "如何申请售后服务?", "output": "1. 登录官网→2. 提交工单..."}
    
    💡 说明:保持这种格式,一行一个问答对
3. 数据清洗
  • 下载自动清洗工具:BleachClean(解压即用)
  • 运行命令:
    ./bleachclean --input /mydata --output cleaned_data.jsonl
    

二、安装训练环境

1. 安装Python
  • 访问 python.org 下载3.10版本
  • 安装时务必勾选 Add Pyth
### DeepSeek 本地部署教程 #### 安装 Ollama 和 Chatbox 为了实现 DeepSeek本地部署,需先安装 Ollama 工具。此工具简化了模型的调用过程,无需额外配置开发环境或编写推理代码[^2]。 对于 Windows 用户,可以通过按 `Win + R` 输入 `cmd` 打开命令提示符;而对于 Mac 用户,则可以直接打开 Terminal 应用程序。一旦进入终端界面,可以按照官方文档指导完成 Ollama 的安装流程[^3]。 ```bash # 下载并安装 Ollama (假设已提供下载链接) curl -fsSL https://example.com/install.sh | sh ``` #### 验证安装成功与否 安装完成后,验证是否正确设置了 Ollama 环境非常重要。这一步骤可通过简单的命令行测试来完成: ```bash ollama list ``` 上述命令会显示当前可用的所有预训练模型列表,其中包括 DeepSeek 模型版本信息等。 #### 启动 DeepSeek 模型服务 确认无误后,即可启动特定的大规模语言模型(LLM)。针对 DeepSeek,只需简单地执行如下命令: ```bash ollama run deepseek-r1 ``` 这条语句将会初始化指定版本的 DeepSeek LLM 实例,并准备接收来自用户的请求。 #### 导入自定义数据集 当涉及到实际应用场景时,往往需要向已经部署好的模型中加入新的知识点或是更新现有资料库。对于 DeepSeek 而言,支持多种方式的数据导入机制,但具体的实施细节取决于所使用的底层框架和技术栈。通常情况下,开发者可能会考虑利用 API 接口上传文件、数据库同步等方式来进行增量式的知识图谱构建与维护工作[^1]。 由于具体操作可能涉及敏感信息处理以及复杂的业务逻辑设计,建议参考官方提供的最新指南获取最准确的操作说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT·陈寒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值