RagFlow本地部署使用


前言

开源RAGFlow引擎:打造无幻觉、高精度的文档理解与生成体验

RAGflow,这个新兴的开源RAG(Retrieval-Augmented Generation)引擎,正以其独特的深度文档理解能力,为大型语言模型的应用带来了革命性的变革。在处理PDF文件时,我们经常面临提取干净数据的挑战,而RAGFlow的出现,恰恰解决了这一问题,它能够提供准确无误且无幻觉的生成结果。
在这里插入图片描述
github地址:https://github.com/infiniflow/ragflow
官网文档:https://infiniflow.cn/docs/dev/

一、RAGFlow的安装和部署

前置条件

  • CPU >= 4 核
  • 内存 >= 16 GB
  • 硬盘 >= 50 GB
  • Docker版本 >= 24.0.0 & Docker Compose >= v2.26.1

1.安装

克隆仓库

git clone https://github.com/infiniflow/ragflow.git

运行以下命令会自动下载开发版本的RAGFlow Docker映像。要下载并运行指定的Docker版本,请在运行以下命令之前,将docker/.env中的RAGFLOW_VERSION更新到预期版本,例如RAGFLOW_VERSION=v0.7.0。

构建预建的Docker映像并启动服务器

cd ragflow/docker
chmod +x ./entrypoint.sh
docker compose up -d

如果你本地安装了redis或minio可能出现端口占用问题,修改.env中的配置信息即可

核心映像的大小约为9 GB,可能需要一段时间才能加载。

服务器启动成功后再次确认服务器状态:

docker logs -f ragflow-server

以下输出证实了系统的成功启动:

    ____                 ______ __
   / __ \ ____ _ ____ _ / ____// /____  _      __
  / /_/ // __ `// __ `// /_   / // __ \| | /| / /
 / _, _// /_/ // /_/ // __/  / // /_/ /| |/ |/ /
/_/ |_| \__,_/ \__, //_/    /_/ \____/ |__/|__/
              /____/

 * Running on all addresses (0.0.0.0)
 * Running on http://127.0.0.1:9380
 * Running on http://x.x.x.x:9380
 INFO:werkzeug:Press CTRL+C to quit

这里注意,安装完成后并不是要进入 下面两个地址

  • http://127.0.0.1:9380
  • http://172.18.0.6:9380
    而是要进入:http://localhost:80 先注册账号,是下面这个页面
    在这里插入图片描述

2.注册登录

在上图的界面中注册,然后登录就来到下面这个页面了
在这里插入图片描述

二、添加模型

1.配置 Ollama 连接大模型

如下图我们先配置模型,点击右上角头像,再点击模型提供商
在这里插入图片描述
点击Ollama添加模型,填写模型信息。
如果ollama是在本机的话docker访问宿主机url为:http://host.docker.internal:11434
在这里插入图片描述

2.配置Xinference连接大模型

点击Xinference配置模型,填写模型信息
在这里插入图片描述

三、知识库使用

1.创建知识库

点击创建知识库,输入知识库名称。
在这里插入图片描述
在这里插入图片描述

2.上传文件解析

在数据集中,点击新增文件,选择文件后选择上传。
在这里插入图片描述
点击开始按钮进行解析
在这里插入图片描述
在解析方法中可以配置分段标识符、解析方法等信息。
在这里插入图片描述

四、聊天

在聊天模块中点击新建助理,填写信息,选择知识库。在模型设置中配置模型信息。
在这里插入图片描述
输入想根据知识库提问的问题。效果如下:
在这里插入图片描述
聊天API

在这里插入图片描述

在这里插入图片描述

### RAGFlow 部署指南与最佳实践 #### 选择合适的日志设备配置 为了提高吞吐量并保持稳定的延迟,建议使用专用的日志设备。通过设置 `dataLogDir` 指向该设备上的目录,并确保 `dataDir` 不位于同一设备上,可以显著提升性能[^1]。 #### 使用轻量化操作系统增强安全性 对于希望进一步减少攻击面的情况,考虑采用像 RancherOS 这样的轻量级 Linux 发行版。这种系统运行所有进程作为 Docker 容器,仅启动必要的最小数量的服务来提供访问权限和支持用户空间中的实际工作负载实例化。这不仅减轻了系统的负担还增强了默认的安全性[^2]。 #### 准备环境 在准备部署 RAGFlow 的环境中,需先安装 Python 和 pip 工具链以及 Git 版本控制系统。接着克隆官方仓库获取最新源码: ```bash git clone https://github.com/your-repo/RAGFlow.git cd RAGFlow pip install --upgrade pip setuptools wheel pip install -r requirements.txt ``` #### 构建镜像和服务编排 利用 Docker Compose 文件定义服务依赖关系及其参数设定。创建 `.env` 文件用于存储敏感信息如 API 密钥等变量值;编辑 `docker-compose.yml` 来指定容器间网络连接方式和其他必要选项。 ```yaml version: '3' services: ragflow_service: build: . ports: - "8000:80" environment: - SECRET_KEY=${SECRET_KEY} volumes: db_data: ``` #### 启动应用 完成上述准备工作之后,在项目根目录下执行命令以启动整个应用程序栈: ```bash docker-compose up -d --build ``` #### 日志审计功能启用 开启审核日志记录有助于监控操作行为模式识别潜在威胁活动。按照具体平台文档指导激活相应特性,以便更好地保护生产环境下的数据安全性和隐私合规性。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值