RagFlow本地开发环境部署

前端页面

RagFlow

本文档为开发环境搭建,切勿用于生产

  1. 前端构建

    1. 安装依赖,首先cd web 到前端路径下,使用npm i --force 安装前端的依赖包 (node 安装自己解决吧!)
    2. 等待依赖安装完成后,使用 npm run dev 启动,访问地址,会出现如下图
    3. 在这里插入图片描述

  1. 后段构建

    1. 依赖组件

      • MySQL

      • MiniO

      • PostgresSQ L

      • Redis

      • Elasticsearch

        以上组件自行安装,或docker启动,都可以。依据个人爱好而定

    2. 环境依赖

        - Python (个人为3.10)
      
    3. API 启动流程

      1. 替换配置文件
        1. /path/to/pag_flow/conf/service_conf.yaml 中替换 MYSQL 等连接信息
      2. python依赖包安装
        1. 如果你是 x86 结构,使用 pip install -r requirements.txt
        2. 如果是arm架构, 使用 pip install -r requirements_arm.txt
      3. azure 安装
        1. azure 5.0.0 后,已经开始弃用,如需使用需要单独安装,所以需要单独安装, 你也可以写在requirements.txt中,我比较懒,所以就手动安装了
          • pip install azure-storage-blob
          • pip install azure-identity
          • pip install azure-storage-file-datalake
      4. 其他python包
        1. 不知道是不是我安装依赖时网络的原因,运行时提示找不到一些包
          • pip install infinity_emb
          • pip install graspologic
      5. 乱七八糟的下载 (这一步可以先跳过)
        1. 因网络问题,有些数据集文件无法下载,所以想要运行需要手动下载文件

          • NLTK 数据集下载时因网络会出现异常

            1. Resource wordnet not found.
                Please use the NLTK Downloader to obtain the resource:
              
                >>> import nltk
                >>> nltk.download('wordnet')
                
                For more information see: https://www.nltk.org/data.html
              
                Attempted to load corpora/wordnet
              
                Searched in:
                  - '/Users/zhiboyuan/nltk_data'
                  - '/opt/miniconda3/envs/ragflow/nltk_data'
                  - '/opt/miniconda3/envs/ragflow/share/nltk_data'
                  - '/opt/miniconda3/envs/ragflow/lib/nltk_data'
                  - '/usr/share/nltk_data'
                  - '/usr/local/share/nltk_data'
                  - '/usr/lib/nltk_data'
                  - '/usr/local/lib/nltk_data'
              
            2. 针对这个异常, 我是手动下载,然后在Searched in 下面的路径中随便选一个放到指定目录下

            3. 这里给出GitHub下载地址 NLTK Data GitHub

        2. 模型下载

          1. 程序会下载huggingface网站中InfiniFlow/deepdoc 下的模型保存到 rag/res/deepdoc 这里的 deepdoc 文件夹是我手动建立的
          2. Deepdoc 下的模型下载地址 deepdoc
        3. 其他

          1. 在启动过程中发现还有 BAAI/bge-large-zh-v1.5 等模型的下载,我这里重新运行了几遍程序,就没有问题了,也可以到网站下载模型,放到指定的目录下
      6. 启动
        1. service_conf.yaml 中更改 http_port9456
        2. 我是使用pycharm 启动的,所以直接运行这两个文件即可
          • api/ragflow_server.py
          • rag/svr/task_executor.py
      7. 登陆后界面

        1. 在这里插入图片描述

        2. 在这里插入图片描述

### RAGFlow 本地化部署 Linux 操作指南 #### 准备工作 为了顺利进行RAGFlow本地化部署,在Linux环境中需先完成必要的准备工作。确保已安装Git工具以便于从GitHub上获取项目源码[^1]。 ```bash sudo apt-get update && sudo apt-get install -y git ``` #### 获取RAGFlow存储库 通过执行如下命令来克隆RAGFlow仓库至本地机器: ```bash git clone https://github.com/infiniflow/ragflow.git ``` 此操作会下载整个项目的最新版本到当前目录下的`ragflow`文件夹中。 #### 配置系统参数 对于某些特定应用,可能需要调整操作系统级别的配置项以满足其运行需求。针对RAGFlow而言,建议提高虚拟内存映射区域的最大数量限制,这可以通过修改内核参数实现: ```bash [root@localhost opt]# sudo sysctl -w vm.max_map_count=262144 [root@localhost opt]# sysctl vm.max_map_count ``` 上述指令首先设置了新的最大映射计数值并立即生效;其次查询该值确认更改成功[^3]。 #### 安装依赖环境 依据官方文档指示,还需准备其他前置条件比如Python解释器及其相关包管理工具pip等(这部分假设读者已经具备基础开发环境)。如果涉及到数据库或其他服务端组件,则依照相应产品的说明文档来进行安装与初始化。 #### 运行OLLAMA组件(如有必要) 部分场景下可能会用到由OLLAMA提供的功能模块,此时可以参照专门页面上的指导完成软件栈的构建和启动过程[^2]。 #### 启动应用程序 最后一步就是按照README.md中的指引编译、测试以及正式上线RAGFlow平台了。通常情况下,开发者们会在根路径找到详细的入门手册帮助理解后续步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值