一、前置说明
1、RAG(Retrieval-Augmented Generation 检索增强生成)技术
- 先把自己的私有资料(文本、图片等)收集到一个 “知识库” 中
- 让AI先从知识库中搜索可用资料,整理成增强版的提示词后再交给大模型,让大模型统筹通用知识和你的私有知识后,再输出答案
- 解决问题:
- 当你问的问题大模型不知道的时候,会胡说八道(RAG 让他可以从你的知识库中寻找答案)
- 你自己的私有资料需要保密
2、本地部署环境:
- 操作系统:Windows 11(RAM32G,GPU2G)(中配笔记本电脑)
- 部署运行 DeepSeek:Ollama + DeepSeek
- Ollama:本地运行大型语言模型的工具
- 部署运行 RAG:Docker + RAGFlow
- Docker:一键运行人家帮你集成打包好的 RAGFlow 平台
- RAGFlow:用于实现 “检索增强生成(RAG)” 的平台,可以傻瓜式完成一个简易的 RAG 系统,就如同本文
- 自带 Embedding 大模型,并自动创建和维护向量数据库(知识库)
- 可以通过界面来快速构建知识库、对话助手
二、部署步骤
1、本地部署 DeepSeek
另外,为了确保部署在 Docker 中的 RAGFlow 能够正确地与 Ollama 进行通信
,需要添加一个环境变量:
<