题意:给一个邻接矩阵,表示顶点之间的距离,然后有m行,每行给出两个数,表示这两个顶点之间有路了,不需要再修路。
问最少要修多长的路,把所有顶点连起来。
思路:prim算法,不用堆优化也行,下标从0开始,每次加入且只加入一个点,并把它到最小生成树的距离加上,对于有路的两个顶点,把它们之间的距离置为0。
每次只有当把顶点加入后,才把vis标记置为1。
#pragma warning(disable:4996)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<climits>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
typedef long long ll;
const int inf = INT_MAX;
int n, sum,dis[1005];
struct node
{
int v, w;
bool operator<(const node& x)const
{
return w > x.w;
}//优先队列排序方式
};
vector<node>vec[1005];
bool vis[1005];
void prim()
{
int i, temp1, temp2;
node st;
st.v = 0;st.w = 0;
priority_queue<node>q;
q.push(st);
//开始的时候,vis[st.v]不标记为1,不然直接结束循环了
for (i = 0;i < n;i++)
dis[i] = inf;
//初始化dis数组为inf
while (!q.empty())
{
node now = q.top();q.pop();
if (vis[now.v])continue;
//已经标记了的就跳过
vis[now.v] = 1;
sum += now.w;
//cout << now.v << " " << now.w << endl;
for (i = 0;i < n;i++)
{
node Next = vec[now.v][i];
if (!vis[Next.v] && dis[Next.v] > Next.w)
{
dis[Next.v] = Next.w;
q.push(Next);
}
}
//把相邻的结点遍历一次
}
}
int main()
{
int m, i, j, u, v;
node t;
while (scanf("%d", &n) == 1)
{
sum = 0;
memset(vis, 0, sizeof(vis));
for (i = 0;i < n;i++)vec[i].clear();
//初始化
for (i = 0;i < n;i++)
{
for (j = 0;j < n;j++)
{
scanf("%d", &u);
t.w = u;t.v = j;
vec[i].push_back(t);
}
}//用vector存图
scanf("%d", &m);
while (m--)
{
scanf("%d%d", &u, &v);
vec[u - 1][v - 1].w = 0;
vec[v - 1][u - 1].w = 0;
}
prim();
printf("%d\n", sum);
}
return 0;
}