论文1时空同步图卷积网络

Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

时空同步图卷积网络

概述

提出了一种用于时空网络数据预测的新模型,称为时空同步图卷积网络(STSGCN)。该模型通过精心设计的时空同步建模机制,能够有效捕获复杂的局部时空相关性。同时,模型中设计了针对不同时间段的多个模块,以有效捕捉局部时空图中的异质性。

Introduction

本文重点设计一种模型来同步捕获复杂的时空相关性并考虑异质性,以提高时空网络数据预测的准确性。
以图1所示的时空网络为例,该网络中存在三种不同的影响。时空图中的每个节点都可以在同一时间步直接影响其邻居节点,这种影响源自实际的空间依赖关系。同时,由于时间序列中的时间相关性,每个节点也可以在下一个时间步直接影响自身。此外,由于同步的时空相关性,每个节点甚至可以在下一个时间步直接影响其邻居节点,如图1所示。存在三种不同影响的原因是信息在一个时间步中的传播。时空网络同时沿空间和时间维度发生。由于节点之间的空间距离和时间序列的时间范围的限制,这些复杂的时空相关性通常是局部的。我们将这些复杂的影响称为局部时空相关性。
图一
具体来说,我们构建了局部时空图,将相邻时间步长的各个空间图连接成一个图。然后,我们构建一个时空同步图卷积模块(STSGCM)来捕获这些局部时空图中复杂的局部时空相关性。同时,为了捕获远程时空网络数据的异构性,我们设计了时空同步图卷积层(STSGCL),在不同时间段部署多个单独的STSGCM。最后,我们堆叠多个 STSGCL 来聚合远程时空相关性和异质性以进行预测

相关工作

Spatial-Temporal Prediction

Graph Convolution Network

问题定义

在这里插入图片描述

时空同步图卷积网络

STSGCN模型的体系结构。

我们将STSGCN的核心思想总结为三点:
1.在上一个和下一个时间步骤将每个节点与自己连接起来,以构建一个本地化的时空图。
2. 使用时空同步图卷积模块来捕获局部时空相关性。
3.部署多个模块对时空网络系列中的异构性进行建模。
模型体系结构

局部时空图构建

通过将前一个时刻和后一个时刻的所有节点与其自身连接起来,我们可以得到一个局部时空图。根据局部时空图的拓扑结构,可以直接捕获每个节点与其时空邻居之间的相关性。
在这里插入图片描述

时空嵌入

在这里插入图片描述

时空同步图卷积模块

我们构建了时空同步图卷积模块(STSGCM)来捕获局部时空相关性。 STSGCM 由一组图卷积运算组成。 图卷积运算可以聚合每个节点与其邻居的特征。 我们在顶点域中定义图卷积运算来聚合时空网络中的局部时空特征。 图卷积运算的输入是局部时空图的图信号矩阵。 在我们的图卷积运算中,每个节点在相邻时间步聚合其自身及其邻居的特征。 聚合函数是一个线性组合,其权重等于节点与其邻居之间的边的权重。 然后我们部署一个带有激活函数的全连接层,将节点的特征转换到新的空间中。 该图的卷积运算可以表述如下:
在这里插入图片描述
是具有两个图卷积操作的时空同步图卷积模块的架构示例。 Cin和Cout分别表示输入矩阵和输出矩阵的特征数,AGG表示聚合层。 (b) 表示聚合操作的输出。 ©是聚合层中裁剪操作的示例,仅保留中间时间步的节点。
在这里插入图片描述

聚合操作

在这里插入图片描述

裁剪作业

裁剪操作(图4(c))删除了前一个和后一个时间步的节点的所有特征,只保留中间时刻的节点。原因是图卷积运算已经聚合了前一个和下一个时间步骤的信息。即使我们裁剪了两个时间步长,每个节点也包含局部时空相关性。

时空同步图卷积层

为了捕获整个网络序列的长程时空相关性,该方法使用滑动窗口来切割不同的时间段。由于空间时间数据的异质性,最好使用多个空间时间同步图卷积模型(STSGCMs)来分别对不同的时间段进行建模,而不是为所有时间段共享一个模型。多个STSGCMs使得每个模型能够专注于建模局部图中的局部时空相关性。我们将一组STSGCMs部署为一个空间时间同步图卷积层(STSGCL),用于提取长程时空特征,如图2所示。

额外组件

掩模矩阵

在STSGCN中添加一个可学习的掩码矩阵Wmask来调整聚合权重,使聚合更加合理。 Wmask ∈ R3N×3N 表示掩模矩阵。我们对 Wmask 和局部邻接矩阵 A′ 进行逐元素乘积,以生成权重调整的局部邻接矩阵:
在这里插入图片描述

输入层

我们在网络顶部添加全连接层,将输入变换到高维空间,可以提高网络的表示能力。

输出层

我们设计一个输出层,将最后一个 STSGCL 的输出转换为预期的预测。该输出层的输入可以表示为 X ∈ RT ×N×C 。我们首先将其转置并重塑为 X ∈ RN×TC。然后我们使用 T ′ 个两个全连接层来生成预测,如下所示:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值