【3DCNN基础】

【概述】

3DCNN是可以处理3D输入数据的卷积神经网络,结构与2DCNN相同,但是比2DCNN占用更多的内存空间和运行时间。另一方面,由于输入数据的信息很丰富,3DCNN可以给出更精确的结果。CNN架构包括resnet, LeNet, Densenet等,这些架构也以三维形式提供。

【3D卷积层】

 卷积层采用卷积来检索图像信号中包含的特征。卷积层的输出称为特征图或者激活图。3D卷积操作比2D卷积操作更为复杂。

 

 【3D池化层】

池化层用于减少图像的空间维度,同时仅保留最具描述性的像素。有 3 种常用方法可供使用:最大池化(选择最大值)、最小池化(选择最低值)、平均池化(值的平均值)。

 

 【3D全连接层】

全连接层适用于之前已经展平的输入,它将一层中的每个神经元连接到另一层中的所有神经元。

 

【激活函数】

激活函数是一个数学函数,它考虑权重和偏差来确定哪个结果将转移到下一个神经元,可以分为线性激活函数和非线性激活函数。这种激活函数的选择取决于要解决的问题的类型。

非线性激活函数:

                 

 【3DCNN和2DCNN比较】

 原文链接:https://www.reachiteasily.com/2021/06/3d-convolutional-neural-network-pytorch.html

 此笔记仅供自己复习使用!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值